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Let R be an abstract Riemann surface of positive boundary and
let (R,} (n=0,1,2,...) be its exhaustion with compact relative
boundaries {OR,}.” Each 9R, consists of a finite number of analytic
curves. Let D be a non compact subdomain whose relative boundary
9D consists of at most an enumerably infinite number of analytic
curves clustering nowhere in B. We say that a sequence {D N\ (R—R,)}
determines a subset of the ideal boundary, which is denoted by B,.
In this article we shall introduce the harmonic measures and capacity
of B, and study their applications.

1. Harmonic Measures

Let U(z) be a continuous function in R. If there exists a
number » such that U(z)=1—¢ for given ¢ in DN (R—R,), we say
that U(z) has limit =1 in B,. Let w,,.s(2) be a bounded harmonic
function in R,.;—((R,;—R,) N D) such that w,,.:;(2)=0 on OR,,,—D
and w,,.2)=1 on (OR,ND)+ (@D N R,.;). Then w,u.i:;2)=wnn)
and . (2) <o, (2). Put l”im 1112 onnri(R)=w(®). We call w(z) the
outer harmonic measure of B,. We define the inner harmonic
measure of B, similarly. Another definition is as follows: Let
{v(2)} be a class of continuous super-harmonic functions such that
0=vR® =<1, limui)=1 in B,. Let V(2) be its lower envelope.
Then it is easy to prove that V(2)=w(2). Let R, be a compact
disc in R and let o ,.(2) be a bounded harmonic function in
R,.,—(R,..—R,) N D)—R, such that w,,.(2)=0 on 9R,+ (oR,,,— D)
and ) ,.;(2)=1 on (OR,N D)+(@DNR,.,).

Then lim lim o) .. i()=w'(z). We have at once from the defini-

tion the fc:llwzing
Theorem 1. Let By and By, be two subsets of ideal boundary
and let wp(2) be harmonic measures of B,. Then
wl)l(z) twp,(2) = wp,n,(2), w?)l(z) + wi:z(z) = wi)lu)z(z)-
If D'DO(R—R,)N D) for a number m, we say that D’ covers B).
Let D, = D,,... be a sequence of non compact domains containing
By and let U(z) be a positive harmonic function in B. We denote

1) In this article, we denote by oG the relative boundary of G.
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the lower envelope of continuous super-harmonic functions {v(z)}
such that v(2) = U(z) in D by V,(2). Then V, (2) = V5 (2)--- and
lim V), (2)=Vi(2)=Ux(z). We say that V,(z) is obtained from U(2)
by the extremisation with respect to {D,}.

Theorem 2

(Uea:(z))ex: Uem(z)'

Lemma 1. Let Vi(2) be the lower envelope of non negative con-
tinuous super-harmonic functions {v(z)} such that v(z) =U ) in D and
let Va(2) be the lower envelope of continuous super-harmonic functions
{v(2)} such that v()=V,(2) in a non compact domain G:GDOD. Then

V(2)=Vu(2).

Proof. Let v}(2) be a harmonic funetion in R,—D such that
vp()=U{) on oD R, and v};(R)=0 OR,—D. Then uv}(2)*1 Vu(2).
On the other hand let vi(2) be a harmonic function in R,— G such that
viR)=V5n(z) on 9G NR, and v%(2)=0 on OR,—G. Then vi(z) 4 V(2).
Since v3(z) 1 Vo), ve(?) =vh(z) on 0GNR, and vhR)=vz(2)=0 on
oR,—@G, whence Vi(2)=V,(2). On the other hand, it is clear v%(2)
=Vo,(z). Hence Vu(2)=Vn(2).

Lemma 2. Let ¢2) (1=1,2,...) (g, <¢*) be positive continuous

boundary functions on OG such that j .go*g%gﬁﬂds < oo, where
7

G(z,p) is the Green’s function of R—G. Let V,(2) be the lower
envelope of non megative continuous super-harmonic functions {v(2)}
such that v(2)=p2) on OG. If p(2)—>p(2) on 9G, then V, (2)>V(2).

Let G.(z, p) be the Green’s function of R,—G. Then G,(z,p)t

G(z, p) and Gz, ’p)T 9G® D) on 5G. Hence
on on

nmcw on
0GN Ry,

27 = lim M’—@ ds = f lim _@gﬂ(ﬁL@ ds.
on »

For any given number ¢ >0, we can find a number 7, and %k such
that | p(2)—@.(2)|<e on oG R, and f @* iGé—zfl ds<e. Then

G N(R=RY)
[V5i(2)— Vi(2) | < 8e (n>nq, k> ky(n,)), where V;(2) and Vi(2) is harmonic
funetions in R,—G which have boundary values ¢, and ¢ on 9G—R,
and vanish on OR,—G. Let e~>0. We have lim V, =V.,(2).

Let I7Z+‘(z) and Vm(z) be the lower envelopes of continuous super-
harmonic functions in B—D, which have as their boundary values
on 9D, Von.(2) and U..(z) respectively. Then by Lemma 1, fC’::”(z)
= Vomii(?). Since gim V,(2)=U.2), llm Voms §2)=U..(2) on 2D,,, then

by Lemma 2, we have (U..(2))..=1im lim V3*'(2)=1im Vo, (2)=U.(2).
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Corollary. Let w(z) be the outer harmonic measure of Bp. Then
if w(z)=0, lzien})w(z):l, and if o'(2) %0, ii_wjb)w(z)zl.

Proof. We can easily prove as in théE proof of Theorem 2 that
o(R)=w.(?). Let &,,.,(2) be a harmonie function in R,,,—(BR—R,) N D)
such that &,,,.(2)=w(®) on 9D (R,+;,—R,) and &,,.;(2)=0 on OR,;
—D. If limw@®@) <K<1, @pui®) <Ko,..:(2), where lim lim @, ,.(2)

zeD n=00 =00
~o(@).  But limlim . ()=0u@)=0@) mplies 6.2 = Kou).
Hence o.(2)=0. This is absurd. The latter part is proved similarly.
Corollary
o'(2)=0 s equivalent to w(2)=0.

Proof. Let &, () be the harmonic measure of OR, with respect
to Rn+i_‘(Dn(Rn+f,_'Rn))_Ro le (/'-\’n,n+i(z):1 on a1‘?0 and C/'\’n,n+i(z):()
on (OR,.;— D)+ @D N (R,..—R.,))+ (@R, N D). Suppose »'(?)=0. Then
Bnmsi(@)F ©hnii®) = 0pnii(2). Let t—>co and then n—>co. Then we
have &(2) = w(z), where &(z)=1, because R is a positive boundary
Riemann surface. Denote the maximum of &(z) on 9K, by 2(2<1).
Since #(z)<2 in R—R,, zngw(z) =<1, whence w(2)=0. On the
other hand w(2)>0'(2), ©(2)=0 implies »’(z)=0.

2. Capacity

Let U, ,...(z) be a harmonic function in R,,;,— Ry— (D N(Ry:: — E.))
=B, s Such that U,,..(2)=0 on oR, U,,.(?)=1 on (oR,N D)
+(@D (\(Bpri—R,)) and ?,Uézw —0 on oR,.—D. Then we have

DRn,n+i(Un,n+i(z)_ Un,n+i+j(z)’ Un,n+i(z)):()’ Whence

DBn,n-l-t(Un,n+t+_](z)) - D”n,n+i(Un,n+i(z)) + -DBn,n+i(Un,n+i<z) - Un,n+i+j(z))-
But clearly Dz, nif(Unnss(R)=Dr_r(U*[2)) for every ¢ and n, where
U*(z) is a harmonic function in R,— R, such that U*()=0 on oR,
and U*(z)=1 on oR,. From the above consideration
}EIOI} DBn,nH(Un,nH(z) - Un,n o-t+j(z)) é lzljg DBn,nM(Un,nH(z)'— Un,n+t+j(z)):0-

Thus {U,..:(2)} converges in mean, since U,,./(2)=0 on 9R,, it
converges to U,(z) uniformly in every compact set of R—(D)
(R—R,)). We see by the maximum principle that

Unsinii+/?) = Upnii(2), whence lim U,y n41412)= Unis(?) = Un(?)
=lim Uy, p.i+42). Thus {U,(2)} COI;;ZI‘g‘eS to a harmonic function
denoted by U().

Put Cap (B,)= lim al -a%*;z@ ds = a[ ag_’,(iz) ds. We call it the

o o

capacity of B, and U(z) the equilibrium potential.
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Lemma 1. Let G be a non compact domain containing D and
let Uy(z) be the harmonic function which has the minimum Dirichlet
integral over R—D—R, among all function {U(z)} which have the
same boundary value ¢ on 0D+0R, and let Uyz) be the function
with mintmum Dirichlet integral over R—G—R, which has the
boundary value Uyz) on OR,+°G. Then

Un(z) = Ug?).

Proof. Let U!(z) be a harmonic function in R,—G—R, such
that Uj(2)=U,(2) on 9GNER, and palf-:o on oR,—G. We see
{UX2)} converges. Put lim Uj(z)=U"(2).

Assume Dy o(U'(2)) = Dr-o(Un(2))—d(d>0). Then D, (U)(2)
=< Dr_o(Up(2))—d—c. Let Ul(z) be a harmonic function such that
U’(2)=Un(z) on oR,N(G—D) and U}(?)=U)() on oR,—G. Then
DR.,,—])(U'Z,,(z)) g Dkn—G(Urlb(z))'*'Dknn(G--D)<UD(z)) g DRn«D(UJ)(z))'—‘d-

Choose a sequence {U/(z)} of {U/(z)} which converges to U*(z).
We have Dr_»(U*(2)=<D._»(U'(z))—d. This contradicts the minimal-
ity of Dr_p(Un(2)). Hence Dr_(U'(2))=Dr-«(Un(z)). We also see that
U’(z) is a harmonic continuation of U,(2) by the Dirichlet principle.
On the other hand, since D, _o(Un(z)—U.(2), Ul(z))=0, we have
Dy, -cUn(2)— UNR) = Dr,-o(Un(2)) = Dr, -(U.(2)), whence Us(2)=U(2).

Let Upa.i(2) be the harmonic function in R,.;—E,— (D N(R,.,
—R,)) defined above. Put U,(2)= llrg Upnii(?). We denote the

domain where U,()>1—¢ by G..* It is clear G.D(DN(R—R,)).
Denote by U.,(z) a bounded harmonic function in R,,,—R,—G. such

that U.(2)=0 on OR,, U.,R)=1—¢ on 9G.((R,.;—E,) and agy:‘i —0
on OR,.;N(R—G.). Then U,,(z) converges to U,&) and

oU, oU.
DRnH—Gs(Ue,i(z)) - (1"5) f a’ﬁ’t ds = - 8Uni ds.
ARy 8GN Pyyop g

Let i—>oco. Since Dan—GE(U&i(Z)) T DR—«GS(Un(z))’ DR-GE( Un(z)) - (1 - 6)

U, ds. Since U =< 0 on 9G,, by Fatou’s lemma
on on

3Ry
0= lim Ve > lim U ds, thus f U, ds < 0.
- im0 ON i=co on on
8GN R oG R, N(R~G
Lemma 2
U, ds = U ds,
on on
oG AR,

2) The niveau curve C:=¢ {U,(z)=1-¢} may be compact for every ¢. We imagine
z

that such case ozcurs on some Riemann surfaces of Ogp.
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except for at most one €.

To prove the lemma, we show lim
m=o0
AR, N(R-Gp

sequence {R, }. If there were two constants ¢, and e,(¢,<¢,) such
that lim 9Uﬂ ds=P,<0 and lim %@z ds—P,<0. Consider
n

m/ =0o0 m’ =00

3R () (R Gs QR 1) (R=Gey)

the Dirichlet integral
Dr_c Ge, (U(2)= DR—(‘SL(]- e —U,(R)=1—¢,) f aUn(z) ds

%g” ds=0, for a sub-

3R,
+ [m [ Qo) Trds + [ Qe U@) T ds).
z_m(ic—tFSZ)naIe,,,H/ (Gel—asz)ﬂakm+z’
Since P, <0 and P,<0, P2—P1>P2+8(8>0).
Hence f 1—eg,— ,,(z) Un ds =< Pye,—¢,)
(R—Geg)ﬂaﬁm.i.;/
and [ a—e- ) Zn ds = (—5-Pes—).

(G, =G M1 R 457

Therefore
(1—e,) f OUn §s— D, (Un(#))=Din-c, (Un(2)) + Pife2—E.)

AR,
’ +(—8—Py)(e2—21) X Dr-c, (Un(?))-
This is absurd.

Hence lim %q" ds=0 for ¢ except at most for one ¢, whence
(RGN Rmas
f OUn g5 — f U 75 — lim f es g (1)
on on imco on
3G ARy 9 Ry 4.4 190G

Let @nn.:(2) be a harmonic function in R,,,;—G. such that 0 =< wu m:(?)
=1, @umi(®)=0 on R, OG.+2R,, wnmi(2)=1 on (R,,,—R,) ) G.

and »aff?é'—”t"?ﬂ-zo on 9R,.;,—G.. Then we can prove that w,m.?)
n
converges to wn,(z), where ¢ is the number satisfying (1). Then
Ow ; oU.
U. ,(2) Z0mmei g — f S ni_ s,
f @) on “mims (&) on

ARy +(BGeN Ry, D+ (AR, 4 ;—Ged ARy +(0G N\ Ry . P+ @Ry 4 ~Ged
where n+i=m+j5 and m>n.
Hence f (1—¢) Oommst ds = f L ds
on on
8% (R =Ty dN0Ge
implies (1—¢) f Ooom ds = lim U, _ oU, ds.
i=o0 an on

3R, (Rpy 4~ RpdN0Ge (R=Ryp)N3Ge
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Thus lim w,(2) = 0.

Extremisation

Let D be a non compact domain defining B, and put D,=
DN(R—R,. Let U,z) be the harmonic function in R—D,—R,
such that U,(?)=1 on 9D, U,2)=0 on OR, and U,(2) has the
minimum Dirichlet integral over R—R,—D,. Then U,(2)=>U,,(?).
Since U,(?)=U,.«?), Dy+G,OD, 1 +G,\yy...; €€,>>; ...; lime,=0,
where G, is the domain such that U,(z)>1—e¢, in G, and every ¢,
satisfies (1). Let V(2) be a bounded harmonic function in R— R,
such that Dr_r(V(2))<e and V(z)=0 on OR, and let V,(2) be a
harmonic function in R—R,—(D,+G,) such that V(z)=7V,() on
oG and V,(2) has the minimum Dirichlet integral. It is clear
'Vm(z):liim Vimsi(2), where Vi, ,..(2) is a harmonic function in R,.,
—R,— G, such that V,, ,..()=V(2) on oG, N\R,.; and @1%”;;”-*-3:0 on

ORy i —Gp. Since Dy g (Vo(2))<Dr.z(V(2)), we can choose a sub-
sequence {V,,(2)} which converges to V;(z) in every compact domain
in B. We say that V.J(z) is obtained from V(2) by extremisation
with respect to v sequence {G,}.

Theorem 3
Vi2) = (Vi@))es-
Proof. Let wm;:(?) be a harmonic function such that wu,;(2)=0

on OGN\ Ry j wm,y’,k(z):]- on 8Gmm(Rm+j+k”'Rm+j) and ”8‘%%2@20 on
"
Ry jir—Gme  Put lim oy ;,(2)=wn ;(?), then by Lemma 2, there
k=0 .
exists j, such that wm,j(p)<]f—l(j =744(p)) for any given p, where

M :lirg {Va(2)}. Since {V,(2)} converges to VJi(2), for G, and for
2€
m=1,2..

any given number ¢, there exists /,=[(j,, ) such that
[V, @)—ViR)I<e on 9G, N\ R, (I>1,) and wm,j(p)<jf—j.
On the other hand Vl(z):lkizlg V.«Z), where V,,(2) is a harmonic
function such that V; (2)="V,(2) on 9G,, Rz, a;%":o on R,y — G

Let 17',,,, ;(2) be a harmonic funetion such that T7m,k @)=Vxi(2) on oG,

R,., and »ag’"”?: 00N OR,.4— G Then V, j(2) <V 1(2)+& +2Mwp ;(2),

" ~
let k—co. Then we have | V,(p)— V,.(p) | <8¢ and let [->co and 0.
Then V,(2)— V,(2)<0. The inverse inequality will be obtained as
above. Since lim V@) =(Vi#))e, thus ViR@)=ViE)).



