201. Harmonic Measures and Capacity of Sets of the Ideal Boundary. I

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Dec. 13, 1954)

Let R be an abstract Riemann surface of positive boundary and let $\{R_n\}$ (n=0, 1, 2, ...) be its exhaustion with compact relative boundaries $\{\partial R_n\}^{1}$. Each ∂R_n consists of a finite number of analytic curves. Let D be a non compact subdomain whose relative boundary ∂D consists of at most an enumerably infinite number of analytic curves clustering nowhere in R. We say that a sequence $\{D \cap (R-R_n)\}$ determines a subset of the ideal boundary, which is denoted by B_D . In this article we shall introduce the harmonic measures and capacity of B_D and study their applications.

1. Harmonic Measures

Let U(z) be a continuous function in R. If there exists a number n such that $U(z) \ge 1-\varepsilon$ for given ε in $D \cap (R-R_n)$, we say that U(z) has $\liminf \ge 1$ in B_D . Let $\omega_{n,n+i}(z)$ be a bounded harmonic function in $R_{n+i}-((R_{n+i}-R_n)\cap D)$ such that $\omega_{n,n+i}(z)=0$ on $\partial R_{n+i}-D$ and $\omega_{n,n+i}(z)=1$ on $(\partial R_n \cap D) + (\partial D \cap R_{n+i})$. Then $\omega_{n,n+i+j}(z) \ge \omega_{n,n+i}(z)$ and $\omega_{n+i,j}(z) \le \omega_{n,j}(z)$. Put $\liminf_{n=\infty} \lim_{i=\infty} \omega_{n,n+i}(z)=\omega(z)$. We call $\omega(z)$ the outer harmonic measure of B_D . We define the inner harmonic measure of B_D similarly. Another definition is as follows: Let $\{v(z)\}$ be a class of continuous super-harmonic functions such that $0 \le v(z) \le 1$, $\lim v(z) \ge 1$ in B_D . Let V(z) be its lower envelope. Then it is easy to prove that $V(z)=\omega(z)$. Let R_0 be a compact disc in R and let $\omega'_{n,n+i}(z)$ be a bounded harmonic function in $R_{n+i}-((R_{n+i}-R_n)\cap D)-R_0$ such that $\omega'_{n,n+i}(z)=0$ on $\partial R_0+(\partial R_{n+i}-D)$ and $\omega'_{n,n+i}(z)=1$ on $(\partial R_n \cap D)+(\partial D \cap R_{n+i})$.

Then $\lim_{n\to\infty} \lim_{i\to\infty} \omega'_{n,n+i}(z) = \omega'(z)$. We have at once from the definition the following

Theorem 1. Let B_{D_1} and B_{D_2} be two subsets of ideal boundary and let $\omega_{D_i}(z)$ be harmonic measures of B_{D_i} . Then

 $\omega_{D_1}(z) + \omega_{D_2}(z) \ge \omega_{D_1 + D_2}(z), \quad \omega'_{D_1}(z) + \omega'_{D_2}(z) \ge \omega'_{D_1 + D_2}(z).$

If $D' \supset ((R-R_m) \cap D)$ for a number *m*, we say that D' covers B_D . Let $D_1 \supset D_2, \ldots$ be a sequence of non compact domains containing B_D and let U(z) be a positive harmonic function in *R*. We denote

¹⁾ In this article, we denote by ∂G the relative boundary of G.

Z. KURAMOCHI

[Vol. 30,

the lower envelope of continuous super-harmonic functions $\{v(z)\}$ such that $v(z) \ge U(z)$ in D by $V_D(z)$. Then $V_{D_1}(z) \ge V_{D_2}(z) \cdots$ and $\lim_{i \to \infty} V_{D_i}(z) = V_D(z) = U_{ex}(z)$. We say that $V_D(z)$ is obtained from U(z) by the extremisation with respect to $\{D_i\}$.

Theorem 2

 $(U_{ex}(z))_{ex} = U_{ex}(z).$

Lemma 1. Let $V_D(z)$ be the lower envelope of non negative continuous super-harmonic functions $\{\upsilon(z)\}$ such that $\upsilon(z) \ge U(z)$ in D and let $V_G(z)$ be the lower envelope of continuous super-harmonic functions $\{\upsilon(z)\}$ such that $\upsilon(z) \ge V_D(z)$ in a non compact domain $G: G \supset D$. Then $V_G(z) = V_D(z)$.

Proof. Let $v_D^n(z)$ be a harmonic function in $R_n - D$ such that $v_D^n(z) = U(z)$ on $\partial D \cap R_n$ and $v_D^n(z) = 0$ $\partial R_n - D$. Then $v_D^n(z) \uparrow V_D(z)$. On the other hand let $v_G^n(z)$ be a harmonic function in $R_n - G$ such that $v_G^n(z) = V_D(z)$ on $\partial G \cap R_n$ and $v_G^n(z) = 0$ on $\partial R_n - G$. Then $v_G^n(z) \uparrow V_G(z)$. Since $v_D^n(z) \uparrow V_D(z)$, $v_G^n(z) \ge v_D^n(z)$ on $\partial G \cap R_n$ and $v_D^n(z) = v_G^n(z) = 0$ on $\partial R_n - G$, whence $V_G(z) \ge V_D(z)$. On the other hand, it is clear $v_G^n(z) \le V_D(z)$.

Lemma 2. Let $\varphi_i(z)$ $(i=1,2,\ldots)$ $(\varphi_i \leq \varphi^*)$ be positive continuous boundary functions on ∂G such that $\int \varphi^* \frac{\partial G(z,p)}{\partial n} ds < \infty$, where G(z,p) is the Green's function of R-G. Let $V_{\varphi_i}(z)$ be the lower envelope of non negative continuous super-harmonic functions $\{v(z)\}$ such that $v(z) \geq \varphi_i(z)$ on ∂G . If $\varphi_i(z) \rightarrow \varphi(z)$ on ∂G , then $V_{\varphi_i}(z) \rightarrow V_{\varphi}(z)$.

Let $G_n(z, p)$ be the Green's function of $R_n - G$. Then $G_n(z, p) \uparrow G(z, p)$ and $\frac{\partial G_n(z, p)}{\partial n} \uparrow \frac{\partial G(z, p)}{\partial n}$ on ∂G . Hence

$$2\pi = \lim_{n = \infty} \int \limits_{\partial G_{\cap} R_n} rac{\partial G_n(z, p)}{\partial n} \ ds = \int \limits_{\partial G} \lim \ rac{\partial G_n(z, p)}{\partial n} \ ds.$$

For any given number $\varepsilon > 0$, we can find a number n_0 and k such that $|\varphi(z) - \varphi_k(z)| < \varepsilon$ on $\partial G \cap R_n$ and $\int_{\partial G_n \cap (R-R_n)} \varphi^* \frac{\partial G(z, p)}{\partial n} ds < \varepsilon$. Then

 $|V_{\varphi_i}^n(z) - V_{\varphi}^n(z)| < 3\varepsilon (n > n_0, k > k_0(n_0)), \text{ where } V_{\varphi_i}^n(z) \text{ and } V_{\varphi}^n(z) \text{ is harmonic functions in } R_n - G \text{ which have boundary values } \varphi_i \text{ and } \varphi \text{ on } \partial G - R_n \text{ and vanish on } \partial R_n - G. \text{ Let } \varepsilon \rightarrow 0. \text{ We have } \lim_{i \to \infty} V_{\varphi_i} = V_{\varphi}(z).$

Let $\widetilde{V}_{m}^{m+i}(z)$ and $\widetilde{V}_{m}(z)$ be the lower envelopes of continuous superharmonic functions in $R-D_{m}$ which have as their boundary values on ∂D_{m} , $V_{Dm+i}(z)$ and $U_{ex}(z)$ respectively. Then by Lemma 1, $\widetilde{V}_{m}^{m+i}(z)$ $= V_{Dm+i}(z)$. Since $\lim_{i \to \infty} V_{D_{i}}(z) = U_{ex}(z)$, $\lim_{j \to \infty} V_{Dm+j}(z) = U_{ex}(z)$ on ∂D_{m} , then by Lemma 2, we have $(U_{ex}(z))_{ex} = \lim_{m \to \infty} \lim_{i \to \infty} \widetilde{V}_{m}^{m+i}(z) = \lim_{i \to \infty} V_{Dm+i}(z) = U_{ex}(z)$.

952

No. 10] Harmonic Measures and Capacity of Sets of the Ideal Boundary. I 953

Corollary. Let $\omega(z)$ be the outer harmonic measure of B_D . Then if $\omega(z) \equiv 0$, $\lim_{z \in D} \omega(z) = 1$, and if $\omega'(z) \equiv 0$, $\lim_{z \in D} \omega(z) = 1$.

Proof. We can easily prove as in the proof of Theorem 2 that $\omega(z) = \omega_{ex}(z)$. Let $\tilde{\omega}_{n,n+i}(z)$ be a harmonic function in $R_{n+i} - ((R-R_n) \cap D)$ such that $\tilde{\omega}_{n,n+i}(z) = \omega(z)$ on $\partial D \cap (R_{n+i}-R_n)$ and $\tilde{\omega}_{n,n+i}(z) = 0$ on ∂R_{n+i} -D. If $\lim_{z \in D} \omega(z) \leq K < 1$, $\tilde{\omega}_{n,n+i}(z) \leq K \omega_{n,n+i}(z)$, where $\lim_{n \to \infty} \lim_{i \to \infty} \omega_{n,n+i}(z) = \omega(z)$. But $\lim_{n \to \infty} \lim_{i \to \infty} \tilde{\omega}_{n,n+i}(z) = \omega(z)$ implies $\omega_{ex}(z) \leq K \omega_{ex}(z)$. Hence $\omega_{ex}(z) = 0$. This is absurd. The latter part is proved similarly. **Corollary**

 $\omega'(z)=0$ is equivalent to $\omega(z)=0$.

Proof. Let $\hat{\omega}_{n,n+i}(z)$ be the harmonic measure of ∂R_0 with respect to $R_{n+i} - (D \cap (R_{n+i} - R_n)) - R_0$ i.e. $\hat{\omega}_{n,n+i}(z) = 1$ on ∂R_0 and $\hat{\omega}_{n,n+i}(z) = 0$ on $(\partial R_{n+i} - D) + (\partial D \cap (R_{n+i} - R_n)) + (\partial R_n \cap D)$. Suppose $\omega'(z) = 0$. Then $\hat{\omega}_{n,n+i}(z) + \omega'_{n,n+i}(z) \geq \omega_{n,n+i}(z)$. Let $i \to \infty$ and then $n \to \infty$. Then we have $\hat{\omega}(z) \geq \omega(z)$, where $\hat{\omega}(z) \equiv 1$, because R is a positive boundary Riemann surface. Denote the maximum of $\hat{\omega}(z)$ on ∂R_1 by $\lambda(\lambda < 1)$. Since $\hat{\omega}(z) < \lambda$ in $R - R_1$, $\lim_{z \in D} \omega(z) \leq \lambda < 1$, whence $\omega(z) = 0$. On the other hand $\omega(z) > \omega'(z)$, $\omega(z) = 0$ implies $\omega'(z) = 0$.

2. Capacity

Let $U_{n,n+i}(z)$ be a harmonic function in $R_{n+i} - R_0 - (D \cap (R_{n+i} - R_n))$ = $B_{n,n+i}$ such that $U_{n,n+i}(z)=0$ on ∂R_0 , $U_{n,n+i}(z)=1$ on $(\partial R_n \cap D)$ + $((\partial D \cap (R_{n+i} - R_n))$ and $\frac{\partial U_{n,n+i}}{\partial n}=0$ on $\partial R_{n+i} - D$. Then we have $D_{\mathcal{B}_{n,n+i}}(U_{n,n+i}(z) - U_{n,n+i+j}(z), U_{n,n+i}(z))=0$, whence

 $D_{B_{n,n+i}}(U_{n,n+i+j}(z)) = D_{B_{n,n+i}}(U_{n,n+i}(z)) + D_{B_{n,n+i}}(U_{n,n+i}(z) - U_{n,n+i+j}(z)).$

But clearly $D_{\mathcal{B}_{n,n+i}}(U_{n,n+i}(z)) \leq D_{\mathcal{R}-\mathcal{R}_0}(U^*(z))$ for every *i* and *n*, where $U^*(z)$ is a harmonic function in $R_1 - R_0$ such that $U^*(z) = 0$ on ∂R_0 and $U^*(z) = 1$ on ∂R_1 . From the above consideration

 $\lim_{i = \infty \atop j = \infty} D_{B_{n,n+i}}(U_{n,n+i}(z) - U_{n,n+i+j}(z)) \leq \lim_{i = \infty \atop j = \infty} D_{B_{n,n+i}}(U_{n,n+i}(z) - U_{n,n+i+j}(z)) = 0.$

Thus $\{U_{n,n+i}(z)\}$ converges in mean, since $U_{n,n+i}(z)=0$ on ∂R_0 , it converges to $U_n(z)$ uniformly in every compact set of $R-(D \cap (R-R_n))$. We see by the maximum principle that

 $U_{n+i,n+i+j}(z) \leq U_{n,n+i}(z)$, whence $\lim_{j=\infty} U_{n+i,n+i+j}(z) = U_{n+i}(z) \leq U_n(z)$ $= \lim_{j=\infty} U_{n,n+i+j}(z)$. Thus $\{U_n(z)\}$ converges to a harmonic function denoted by U(z).

Put $Cap(B_D) = \lim_{n \to \infty} \int_{\partial R_0} \frac{\partial U_n(z)}{\partial n} ds = \int_{\partial R_0} \frac{\partial U(z)}{\partial n} ds$. We call it the capacity of B_D and U(z) the equilibrium potential.

Z. KURAMOCHI

Lemma 1. Let G be a non compact domain containing D and let $U_D(z)$ be the harmonic function which has the minimum Dirichlet integral over $R-D-R_0$ among all function $\{U(z)\}$ which have the same boundary value φ on $\partial D + \partial R_0$ and let $U_G(z)$ be the function with minimum Dirichlet integral over $R-G-R_0$ which has the boundary value $U_D(z)$ on $\partial R_0 + \partial G$. Then

$$U_D(z) = U_G(z).$$

Proof. Let $U'_n(z)$ be a harmonic function in $R_n - G - R_0$ such that $U'_n(z) = U_D(z)$ on $\partial G \cap R_n$ and $\frac{\partial U'_n}{\partial n} = 0$ on $\partial R_n - G$. We see $\{U'_n(z)\}$ converges. Put lim $U'_n(z) = U'(z)$.

Assume $D_{R-G}(U'(z)) \leq D_{R-G}(U_D(z)) - d(d>0)$. Then $D_{R_n-G}(U'_n(z))$ $\leq D_{R-G}(U_D(z)) - d - \varepsilon$. Let $U''_n(z)$ be a harmonic function such that $U''_n(z) = U_D(z)$ on $\partial R_n \cap (G-D)$ and $U''_n(z) = U'_n(z)$ on $\partial R_n - G$. Then $D_{R_n-D}(U''_n(z)) \leq D_{R_n-G}(U'_n(z)) + D_{R_n\cap (G-D)}(U_D(z)) \leq D_{R_n-D}(U_D(z)) - d$.

Choose a sequence $\{U_n''(z)\}$ of $\{U_n''(z)\}$ which converges to $U^*(z)$. We have $D_{R-D}(U^*(z)) \leq D_{R-D}(U'(z)) - d$. This contradicts the minimality of $D_{R-D}(U_D(z))$. Hence $D_{R-G}(U'(z)) = D_{R-G}(U_D(z))$. We also see that U'(z) is a harmonic continuation of $U_D(z)$ by the Dirichlet principle. On the other hand, since $D_{R_n-G}(U_D(z) - U'_n(z), U'_n(z)) = 0$, we have $D_{R_n-G}U_D(z) - U'_n(z)) \leq D_{R_n-G}(U_D(z)) - D_{R_n-G}(U'_n(z))$, whence $U_G(z) = U_D(z)$.

Let $U_{n,n+i}(z)$ be the harmonic function in $R_{n+i}-R_0-(D\cap(R_{n+i}-R_n))$ defined above. Put $U_n(z) = \lim_{i \to \infty} U_{n,n+i}(z)$. We denote the domain where $U_n(z) > 1-\varepsilon$ by $G_{\varepsilon}^{(2)}$. It is clear $G_{\varepsilon} \supset (D\cap(R-R_n))$. Denote by $U_{\varepsilon,i}(z)$ a bounded harmonic function in $R_{n+i}-R_0-G_{\varepsilon}$ such that $U_{\varepsilon,i}(z)=0$ on ∂R_0 , $U_{\varepsilon,i}(z)=1-\varepsilon$ on $\partial G_{\varepsilon}\cap(R_{n+i}-R_n)$ and $\frac{\partial U_{\varepsilon,i}}{\partial n}=0$ on $\partial R_{n+i}\cap(R-G_{\varepsilon})$. Then $U_{\varepsilon,i}(z)$ converges to $U_n(z)$ and

$$D_{R_{n+i}-G_{\mathfrak{E}}}(U_{\varepsilon,i}(z))=(1\!-\!arepsilon)\int\limits_{\partial R_{0}}rac{\partial U_{\varepsilon,i}}{\partial n}\,ds=\int\limits_{\partial G_{\varepsilon\cap}R_{n+i}}rac{\partial U_{\varepsilon,i}}{\partial n}\,ds.$$

Let $i \to \infty$. Since $D_{R_{n+i}-G_{\varepsilon}}(U_{\varepsilon,i}(z)) \uparrow D_{R-G_{\varepsilon}}(U_{n}(z)), \ D_{R-G_{\varepsilon}}(U_{n}(z)) = (1-\varepsilon)$ $\int_{\partial R_{0}} \frac{\partial U_{n}}{\partial n} ds$. Since $\frac{\partial U_{\varepsilon,i}}{\partial n} \leq 0$ on ∂G_{ε} , by Fatou's lemma $0 \geq \int_{\partial G_{\varepsilon} \cap R} \lim_{i \to \infty} \frac{\partial U_{\varepsilon,i}}{\partial n} \geq \lim_{i \to \infty} \int_{\partial G_{\varepsilon}} \frac{\partial U_{\varepsilon,i}}{\partial n} ds$, thus $\int_{\partial R_{n} \cap (R-G_{\varepsilon})} \frac{\partial U_{n}}{\partial n} ds \leq 0$. Lemma 2 $\int_{\partial G_{\varepsilon}} \frac{\partial U_{n}}{\partial n} ds = \int_{\partial R_{0}} \frac{\partial U_{n}}{\partial n} ds$,

²⁾ The niveau curve $C_n^{\varepsilon} = \mathfrak{r} \{ U_n(z) = 1 - \varepsilon \}$ may be compact for every ε . We imagine

that such case occurs on some Riemann surfaces of O_{HD} .

No. 10] Harmonic Measures and Capacity of Sets of the Ideal Boundary. I 955

except for at most one ε .

To prove the lemma, we show $\lim_{m \to \infty} \int_{\partial R_m \cap (R-G_{\mathbb{P}})} \frac{\partial U_n}{\partial n} ds = 0$, for a sub-

sequence $\{R_{m'}\}$. If there were two constants ε_1 and $\varepsilon_2(\varepsilon_1 < \varepsilon_2)$ such that $\lim_{m'=\infty} \int\limits_{\partial R_{m'} \cap (R-G_{\varepsilon_1})} \frac{\partial U_n}{\partial n} ds = P_1 < 0$ and $\lim_{m'=\infty} \int\limits_{\partial R_{m'} \cap (R-G_{\varepsilon_2})} \frac{\partial U_n}{\partial n} ds = P_2 < 0$. Consider

the Dirichlet integral

$$D_{R-G_{\varepsilon_{1}}}(U_{n}(z)) = D_{R-G_{\varepsilon_{1}}}(1-\varepsilon_{1}-U_{n}(z)) = (1-\varepsilon_{1}) \int_{\partial R_{0}} \frac{\partial U_{n}(z)}{\partial n} ds$$
$$+ \left[\lim_{s\to\infty} \int_{(R-G_{\varepsilon_{2}})\cap\partial R_{m+i'}} (1-\varepsilon_{1}-U_{n}(z)) \frac{\partial U_{n}}{\partial n} ds + \int_{(G_{\varepsilon_{1}}-G_{\varepsilon_{2}})\cap\partial R_{m+i'}} (1-\varepsilon_{1}-U_{n}(z)) \frac{\partial U_{n}}{\partial n} ds \right]$$

Since $P_1 < 0$ and $P_2 < 0$, $P_2 - P_1 > P_2 + \delta(\delta > 0)$.

$$\int_{(R-G_{\varepsilon_2})\cap \partial R_{m+i'}} (1-\varepsilon_1-U_n(z)) \frac{\partial U_n}{\partial n} ds \leq P_2(\varepsilon_2-\varepsilon_1)$$

and

Hence

$$\int_{G_{\varepsilon_2}-G_{\varepsilon_1}\cap \Im R_{m+i'}} (1-\varepsilon_1-U_n(z)) \frac{\partial U_n}{\partial n} ds \leq (-\delta-P_2)(\varepsilon_2-\varepsilon_1).$$

Therefore

$$(1-\varepsilon_1) \int_{\partial R_0} \frac{\partial U_n}{\partial n} ds = D_{R-G_{\varepsilon_1}}(U_n(z)) = D_{R-G_{\varepsilon_1}}(U_n(z)) + P_2(\varepsilon_2 - \varepsilon_1) + (-\delta - P_2)(\varepsilon_2 - \varepsilon_1) \leq D_{R-G_{\varepsilon_1}}(U_n(z)).$$

This is absurd.

Hence $\lim_{i=\infty} \int_{(R-G_{\varepsilon})\cap \partial R_{m+i}} \frac{\partial U_n}{\partial n} ds = 0$ for ε except at most for one ε , whence

$$\int_{\partial G_{\varepsilon}} \frac{\partial U_n}{\partial n} ds = \int_{\partial R_0} \frac{\partial U_n}{\partial n} ds = \lim_{i \to \infty} \int_{\partial R_{m+i} \cap \partial G_{\varepsilon}} \frac{\partial U_{\varepsilon,i}}{\partial n} ds.$$
(1)

Let $\omega_{n,n+i}(z)$ be a harmonic function in $R_{m+i}-G_{\varepsilon}$ such that $0 \leq \omega_{m,m+i}(z)$ ≤ 1 , $\omega_{m,m+i}(z)=0$ on $R_m \cap \partial G_{\varepsilon} + \partial R_0$, $\omega_{m,m+i}(z)=1$ on $(R_{m+i}-R_n) \cap \partial G_{\varepsilon}$ and $\frac{\partial \omega_{m,m+i}}{\partial n}=0$ on $\partial R_{n+i}-G_{\varepsilon}$. Then we can prove that $\omega_{m,m+i}(z)$ converges to $\omega_m(z)$, where ε is the number satisfying (1). Then

$$\int_{\partial R_0 + (\partial G_{\varepsilon} \cap R_{n+i}) + (\partial R_{n+i} - G_{\varepsilon})} \frac{\partial \omega_{m,m+j}}{\partial n} ds = \int_{\partial R_0 + (\partial G_{\varepsilon} \cap R_{n+i}) + (\partial R_{n+i} - G_{\varepsilon})} \omega_{m,m+j}(z) \frac{\partial U_{\varepsilon,i}}{\partial n} ds,$$

where n+i=m+j and m>n.

Hence
$$\int_{\partial R_0} (1-\varepsilon) \frac{\partial \omega_{m,m+i}}{\partial n} ds = \int_{(\mathcal{R}_{n+i}-\mathcal{R}_m) \cap \partial G_{\varepsilon}} \frac{\partial U_{\varepsilon,i}}{\partial n} ds$$

$$\text{implies} \quad (1\!-\!\varepsilon) \int\limits_{\partial R_0} \frac{\partial \omega_m}{\partial n} \, ds = \lim_{i \to \infty} \int\limits_{(R_{n+i}-R_m) \cap \partial G_{\varepsilon}} \frac{\partial U_{\varepsilon,i}}{\partial n} = \int\limits_{(R-R_m) \cap \partial G_{\varepsilon}} \frac{\partial U_n}{\partial n} \, ds.$$

Thus

$$\lim_{m\to\infty} \omega_m(z) = 0$$

Extremisation

Let D be a non compact domain defining B_D and put $D_n =$ $D \cap (R-R_n)$. Let $U_n(z)$ be the harmonic function in $R-D_n-R_0$ such that $U_n(z) = 1$ on ∂D_n , $U_n(z) = 0$ on ∂R_0 and $U_n(z)$ has the minimum Dirichlet integral over $R - R_0 - D_n$. Then $U_n(z) \ge U_{n+i}(z)$. Since $U_n(z) \ge U_{n+i}(z)$, $D_n + G_n \supset D_{n+1} + G_{n+1}$,...; $\varepsilon_1 \ge \varepsilon_2 \ge$;...; $\lim \varepsilon_n = 0$, where G_n is the domain such that $U_n(z) > 1 - \varepsilon_n$ in G_n and every ε_n satisfies (1). Let V(z) be a bounded harmonic function in $R-R_0$ such that $D_{R-R_0}(V(z)) < \infty$ and V(z) = 0 on ∂R_0 and let $V_m(z)$ be a harmonic function in $R-R_0-(D_m+G_m)$ such that $V(z)=V_m(z)$ on ∂G and $V_m(z)$ has the minimum Dirichlet integral. It is clear $V_m(z) = \lim_{k \to \infty} V_{m,m+i}(z)$, where $V_{m,m+i}(z)$ is a harmonic function in $R_{m+i}(z)$ $-R_0 - \overset{i=\infty}{G_m}$ such that $V_{m,m+i}(z) = V(z)$ on $\partial G_m \cap R_{m+i}$ and $rac{\partial V_{m,m+i}}{\partial n} = 0$ on $\partial R_{m+i} - G_m$. Since $D_{R-G_m}(V_m(z)) < D_{R-R_0}(V(z))$, we can choose a subsequence $\{V_{m'}(z)\}$ which converges to $V_{ex}^{\intercal}(z)$ in every compact domain in R. We say that $V_{ex}^{r}(z)$ is obtained from V(z) by extremisation with respect to γ sequence $\{G_{m'}\}$.

Theorem 3

$$V_{ex}^{\tau}(z) = (V_{ex}^{\tau}(z))_{ex}.$$

Proof. Let $\omega_{m,j,k}(z)$ be a harmonic function such that $\omega_{m,j,k}(z) = 0$ on $\partial G_m \cap R_{m+j}$, $\omega_{m,j,k}(z) = 1$ on $\partial G_m \cap (R_{m+j+k} - R_{m+j})$ and $\frac{\partial \omega_{m,j,k}}{\partial w} = 0$ on $\partial R_{m+j+k} - G_m$. Put $\lim_{k \to \infty} \omega_{m,j,k}(z) = \omega_{m,j}(z)$, then by Lemma 2, there exists j_0 such that $\omega_{m,j}(p) \! < \! \frac{arepsilon}{M}(j \! \geq \! j_0(p))$ for any given p, where $M = \overline{\lim} \{V_m(z)\}$. Since $\{V_{m'}(z)\}$ converges to $V_{ex}^{\intercal}(z)$, for G_m and for $z \in R$ m=1,2...

any given number ε , there exists $l_0 = l_0(j_0, p)$ such that

 $|V_{\iota},(z) - V_{\epsilon x}^{\tau}(z)| < \varepsilon ext{ on } \partial G_m \cap R_{m+j}(l > l_0) ext{ and } \omega_{m,j}(p) < rac{arepsilon}{\mathcal{M}}.$

On the other hand $V_l(z) = \lim_{k \to \infty} V_{l,k}(z)$, where $V_{l,k}(z)$ is a harmonic function such that $V_{i,k}(z) = V_i(z)$ on $\partial G_m \cap R_{m+k}$, $\frac{\partial V_{i,k}}{\partial n} = 0$ on $\partial R_{m+k} - G_m$. Let $\widetilde{V}_{m,i}(z)$ be a harmonic function such that $\widetilde{V}_{m,k}(z) = V_{ex}^{\intercal}(z)$ on $\partial G_m \cap$ $R_{m+k} ext{ and } rac{\partial \widetilde{V}_{m,k}}{\partial n} = 0 ext{ on } \partial R_{m+k} - G_m. ext{ Then } V_{\iota,k}(z) \leq \widetilde{V}_{m,k}(z) + \varepsilon + 2M\omega_{m,j,k}(z),$ let $k \to \infty$. Then we have $|V_i(p) - \tilde{V}_m(p)| < 3\varepsilon$ and let $l \to \infty$ and $\varepsilon \to 0$. Then $V_{ex}(z) - \tilde{V}_m(z) \leq 0$. The inverse inequality will be obtained as above. Since $\lim_{m \to \infty} \widetilde{V}_m(z) = (V_{ex}^{\intercal}(z))_{ex}$, thus $V_{ex}^{\intercal}(z) = (V_{ex}^{\intercal}(z))_{ex}$.

956