33. Remarks on the Jordan-Hölder-Schreier Theorem* ${ }^{*}$

By Tsuyoshi Fujiwara
Department of Mathematics, Yamaguchi University
(Comm. by K. Shoda, m.J.A., March 12, 1955)

The Jordan-Hölder-Schreier theorem, or shortly the J-H-S theorem, in lattices has been considered as the formulation of the J-H-S theorem for algebraic systems. But, A. W. Goldie has proved in his paper [3] the usual theorem on lengths of chains in modular lattices, using the Jordan-Hölder theorem for algebraic systems. In this note, the relations between these theorems will be more cleared. First, we shall show the J-H-S theorem for algebraic systems (§1). Next, considering a lattice L as the algebraic system with the composition U only, we shall introduce a theorem for normal chains of L as the special case of the above theorem. And this theorem will be shown to be the usual J-H-S theorem in the lattice L (§2).
§ 1. Algebraic Systems. In this note we put the following conditions on the algebraic system A to keep out the complication:

0 . All compositions are binary and single-valued, moreover any two elements may be composable by any composition.
I. A has a null-element e.

We denote by $\theta(B), \varphi(B), \ldots$ the congruences on a subsystem B of A. Moreover we denote by Θ the set of all congruences on all subsystems of A, i.e. $\theta=\{\theta(B): B \subset A\}$.

Two congruences $\theta(B)$ and $\varphi(C)$ are called weakly permutable if and only if

$$
(S(\theta(B \frown C)) \mid \varphi(B \frown C))=(S(\varphi(B \frown C)) \mid \theta(B \frown C))
$$

Moreover a congruence $\omega(B \frown C)$ is called a quasi-join of $\theta(B)$ and $\varphi(C)$, if and only if
i) $\omega(B \frown C) \geqq \theta(B \cap C) \smile \varphi(B \frown C)$ and
ii) $S(\omega(B \frown C))=S(\theta(B \frown C) \cup \varphi(B \frown C))$.

A subset Φ of Θ is called a normal family, when Φ has the following conditions:
i) Any two congruences in Φ are weakly permutable.
ii) For any congruences $\theta(B), \varphi(C)$ in Φ, there exists a quasijoin $\omega(B \frown C) \in \Theta$ such that $[\omega(B \frown C) \mid \theta(B)],[\omega(B \frown C) \mid \varphi(C)] \in \Phi$. Such a quasi-join $\omega(B \cap C)$ is called a normal quasi-join.

A normal chain

$$
M=A_{0} \supset S\left(\theta_{0}\left(A_{0}\right)\right)=A_{1} \supset \cdots \supset S\left(\theta_{r-1}\left(A_{r-1}\right)\right)=A_{r}=N
$$

[^0]is called an (M, N) - Φ-normal chain, when any $\theta_{i}\left(A_{i}\right)$ is a congruence in a given normal family Φ.

Theorem 1 (Schreier theorem for algebraic systems). Let

$$
\begin{aligned}
& M=A_{0} \supset S\left(\theta_{0}\left(A_{0}\right)\right)=A_{1} \supset \cdots \supset S\left(\theta_{r-1}\left(A_{r-1}\right)\right)=A_{r}=N \text { and } \\
& M=B_{0} \supset S\left(\varphi_{0}\left(B_{0}\right)\right)=B_{1} \supset \cdots \supset S\left(\varphi_{s-1}\left(B_{s-1}\right)\right)=B_{s}=N
\end{aligned}
$$

be any two (M, N)-D-normal chains. Then these chains can be refined by interpolation of terms $A_{i, j}=\left(A_{i} \cap B_{j} \mid \theta_{i}\left(A_{i}\right)\right)=S\left(\left[\omega_{i, j-1}\left(A_{i} \cap B_{j-1}\right) \mid\right.\right.$ $\left.\left.\theta_{i}\left(A_{i}\right)\right]\left(A_{i, j-1}\right)\right)$ and $B_{i, j}=\left(A_{i} \frown B_{j} \mid \varphi_{j}\left(B_{j}\right)\right)=S\left(\left[\omega_{i-1, j}\left(A_{i-1} \cap B_{j}\right) \mid \varphi_{j}\left(B_{j}\right)\right]\right.$ ($\left.B_{i-1, j}\right)$) such that

$$
A_{i, j} /\left[\omega_{i, j}\left(A_{i} \frown B_{j}\right) \mid \theta_{i}\left(A_{i}\right)\right] \cong B_{i, j} \mid\left[\omega_{i, j}\left(A_{i} \frown B_{j}\right) \mid \varphi_{j}\left(B_{j}\right)\right],
$$

where $\omega_{i, j}\left(A_{i} \cap B_{j}\right)$ are normal quasi-joins of $\theta_{i}\left(A_{i}\right)$ and $\varphi_{j}\left(B_{j}\right)$ respectively.

Proof. This theorem may be obtained by the same way as the proof of Theorem 7 in [2].
§ 2. Lattices and J-systems. Hereafter we assume that a lattice L has the least element 0 to keep out the complication. A lattice L is called a J-system, when L is considered as a algebraic system with the composition U only. And the element 0 is considered as the null-element of the J-system L. A J-congruence means a congruence on a J-system, and an ideal means an ideal of lattices in the usual sense.

By Definition 1 and Theorem 1 in [2], any ideal of the J-system L is a normal sub-J-system, and conversely. Moreover the lower-Jcongruence θ with respect to a normal sub-J-system N is defined by $x \stackrel{\ominus}{\sim} y \rightleftarrows \mathbb{Z} n \in N: n \smile x=n \smile y$. In particular when N is a principal ideal $n / 0, \theta$ is defined by $x \stackrel{\ominus}{\sim} y \rightleftarrows n \cup x=n \cup y$.

A lower-J-congruence θ which is defined on a sub-J-system $m / 0$ and whose normal sub-J-system is $n / 0$, is called an ($m / 0, n / 0$)-congruence. In particular when n is $m / 0$-modular, θ is called a modular ($m / 0, n / 0$)-congruence, or simply a modular congruence.

Lemma 1. Let θ be an ($m / 0, n / 0$)-congruence. Then the quotient m / n is a representative system of the residue classes of $m / 0$ with respect to θ, and $(m / 0) / \theta$ is join-isomorphic to the quotient m / n.

Proof. Let $x \in m / 0$. Then $n \smile x=n \smile(n \smile x)$, i.e. $x \stackrel{\ominus}{\sim} n \smile x$. Hence any class contains an element of m / n. On the other hand, let $x, y \in m / n$ and $x \neq y$. Then $n \cup x=x \neq y=n \smile y$. Hence x and y are not contained in a same class. Therefore m / n is a representative system of the residue classes, and $(m / 0) / \theta$ is join-isomorphic to the quotient m / n.

Lemma 2. Let $\theta(m / 0)$ be a modular ($m / 0, n / 0$)-congruence, and a contained in L. Then $\theta(m \frown a / 0)$ is a modular ($m \frown a / 0, n \frown a / 0$)congruence.

Proof. $n \frown a / 0$ is evidently the normal sub-J-system with respect to $\theta(m \frown a / 0)$, and by Theorem 2 in [1], $n \frown a$ is $m \frown a / 0$-modular. Hence $\theta(m \frown a / 0) \geqq$ the modular ($m \frown a / 0, n \frown a / 0$)-congruence φ. On the other hand, let $x, y \in m \frown a / 0$ and $x \stackrel{\ominus}{\sim} y$. Then $n \smile x=n \smile y$. Hence $(m \frown a) \cap(n \smile x)=(m \frown a) \frown(n \cup y)$. By the $m / 0$-modularity of n, we get $(m \frown a \frown n) \smile x=(m \frown a \frown n) \smile y$. Hence $(n \frown a) \smile x=(n \frown \alpha) \cup y$, i.e. $x \stackrel{\mathscr{L}}{y} y$. Hence $\theta(m \frown a / 0) \leqq \varphi$. Therefore $\theta(m \frown a / 0)$ is the modular ($m \frown a / 0, n \frown a / 0$)-congruence φ.

Lemma 3. Let θ be a modular ($m / 0, a / 0$)-congruence, and φ a modular ($m / 0, b / 0$)-congruence. Then $(S(\theta) \mid \varphi)=(S(\varphi) \mid \theta)=a \smile b / 0$.

Proof. Let $x \in(S(\theta) \mid \varphi)$. Then there exists $a^{\prime} \in S(\theta)=a / 0$ such that $b \smile x=b \smile a^{\prime}$. Hence by $b \smile a^{\prime} \leqq b \smile a$, we get $x \in a \smile b / 0$. Conversely, let $y \in a \cup b / 0$. Then by the $m / 0$-modularity of a, we get $((b \smile y) \cap a) \smile b=(b \smile y) \frown(a \smile b)=b \smile y$. Hence $y{ }^{\mathscr{L}}(b \smile y) \frown a \in a / 0=S(\theta)$, i.e. $y \in(S(\theta) \mid \varphi)$. Therefore we get $(S(\theta) \mid \varphi)=a \smile b / 0$. Similarly we get $(S(\varphi) \mid \theta)=a \smile b / 0$.

Lemma 4. The set Ψ of all modular congruences forms a normal family. In other words, let $\theta(m / 0)$ be a modular ($m / 0, a / 0$)-congruence, and $\varphi\left(m^{\prime} / 0\right)$ a modular ($\left.m^{\prime} / 0, a^{\prime} / 0\right)$-congruence. If $\omega\left(m \cap m^{\prime} / 0\right)$ $=\theta\left(m \frown m^{\prime} / 0\right) \cup_{\varphi}\left(m \frown m^{\prime} / 0\right)$, then $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid \theta(m / 0)\right]$ is a modular $\left(\left(m \frown m^{\prime}\right) \smile a / 0,\left(m \frown a^{\prime}\right) \smile a / 0\right)$-congruence, and $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid \varphi\left(m^{\prime} / 0\right)\right]$ is a modular $\left(\left(m \frown m^{\prime}\right) \cup a^{\prime} / 0,\left(m^{\prime} \frown \alpha\right) \smile a^{\prime} / 0\right)$-congruence.

Proof. By Lemma 2, $\theta\left(m \frown m^{\prime} / 0\right)$ is a modular ($\left.m \frown m^{\prime} / 0, m^{\prime} \cap a / 0\right)$ congruence. Similarly $\varphi\left(m \frown m^{\prime} / 0\right)$ is a modular ($m \frown m^{\prime} / 0, m \frown a^{\prime} / 0$)congruence. By Lemma 3, $\omega\left(m \frown m^{\prime} / 0\right)$ is a quasi-join of $\theta(m / 0)$ and $\varphi\left(m^{\prime} / 0\right)$. By Theorem 4 in [2] and Theorem 5 in [1], $\omega\left(m \frown m^{\prime} / 0\right)$ is a modular $\left(m \frown m^{\prime} / 0,\left(m^{\prime} \frown \alpha\right) \cup\left(m \frown a^{\prime}\right) / 0\right)$-congruence.

Now we shall prove that $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid \theta(m / 0)\right]$ is a modular $\left(\left(m \frown m^{\prime}\right) \cup a / 0,\left(m \frown a^{\prime}\right) \smile a / 0\right)$-congruence ψ. First, by the $m / 0-$ modularity of a, $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid \theta(m / 0)\right]$ is defined on $\left(m \frown m^{\prime}\right) \smile a / 0$ and its normal sub-J-system is $\left(m \frown a^{\prime}\right) \cup a / 0$. Moreover by the $m \frown m^{\prime} / 0$-modularity of $\left(m^{\prime} \frown a\right) \smile\left(m \frown a^{\prime}\right)$, it is clear that $\left(m \frown a^{\prime}\right) \smile a$ is $\left(m \frown m^{\prime}\right) \cup a / 0$-modular. Hence $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid \theta(m / 0)\right] \geqq$ the modular congruence ψ. On the other hand, let x and y be congruent by $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid \theta(m / 0)\right]$. Then by the $m / 0$-modularity of a and Theorem 1 in [1], we get
(*)

$$
\left[(x \smile a) \frown\left(m \frown m^{\prime}\right)\right] \smile a=x \smile a .
$$

Hence $x \stackrel{\ominus}{\sim}(x \cup a) \frown\left(m \frown m^{\prime}\right)$. Similarly $y \stackrel{\ominus}{\sim}(y \smile a) \frown\left(m \frown m^{\prime}\right)$. Hence $(x \smile a) \cap\left(m \frown m^{\prime}\right)$ and $(y \smile a) \frown\left(m \frown m^{\prime}\right)$ are congruent by [$\omega\left(m \frown m^{\prime} / 0\right)$ | $\theta(m / 0)]$ and contained in the domain of $\omega\left(m \frown m^{\prime} / 0\right)$. Therefore $(x \smile a) \cap\left(m \frown m^{\prime}\right)$ and $(y \smile a) \frown\left(m \frown m^{\prime}\right)$ are congruent by $\omega\left(m \frown m^{\prime} / 0\right)$, i.e.

$$
\begin{aligned}
{\left[\left(m^{\prime} \frown a\right) \smile\left(m \frown \alpha^{\prime}\right)\right] } & \smile\left[(x \smile a) \frown\left(m \frown m^{\prime}\right)\right] \\
& =\left[\left(m^{\prime} \frown a\right) \smile\left(m \frown a^{\prime}\right)\right] \smile\left[(y \smile a) \frown\left(m \frown m^{\prime}\right)\right] .
\end{aligned}
$$

Join a to both sides of this identity, and using (*), we obtain

$$
\left(m^{\prime} \frown a\right) \smile\left(m \frown a^{\prime}\right) \smile(x \smile a)=\left(m^{\prime} \frown a\right) \smile\left(m \frown a^{\prime}\right) \smile(y \smile a) .
$$

Hence $\left[\left(m \frown a^{\prime}\right) \smile a\right] \smile x=\left[\left(m \frown a^{\prime}\right) \smile a\right] \smile y$, i.e. $x{ }^{\Psi} y$. Hence $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid\right.$ $\theta(m / 0)] \leqq \psi$. Therefore $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid \theta(m / 0)\right]$ is the modular $\left(\left(m \frown m^{\prime}\right)\right.$ $\left.\smile a / 0,\left(m \frown a^{\prime}\right) \cup a / 0\right)$-congruence ψ. Similarly $\left[\omega\left(m \frown m^{\prime} / 0\right) \mid \psi\left(m^{\prime} / 0\right)\right]$ is the modular $\left(\left(m \frown m^{\prime}\right) \smile a^{\prime} / 0,\left(m^{\prime} \frown a\right) \smile a^{\prime} / 0\right)$-congruence.

Combining Theorem 1 and Lemma 4, we can immediately obtain the following

Theorem 2 (Schreier theorem for J-systems). Let
$m / 0=a_{0} / 0 \supset S\left(\theta_{0}\left(a_{0} / 0\right)\right)=a_{1} / 0 \supset \cdots \supset S\left(\theta_{r-1}\left(a_{r-1} / 0\right)\right)=a_{r} / 0=n / 0$,
$m / 0=b_{0} / 0 \supset S\left(\varphi_{0}\left(b_{0} / 0\right)\right)=b_{1} / 0 \supset \cdots \supset S\left(\varphi_{s-1}\left(b_{s-1} / 0\right)\right)=b_{s} / 0=n / 0$
be any two ($m / 0, n / 0$)- Ψ-normal chains. Then these chains can be refined by interpolation of terms $a_{i, j} / 0=a_{i+1} \smile\left(a_{i} \frown b_{j}\right) / 0$ and $b_{i, j} / 0=b_{j+1}$ $\smile\left(a_{i} \frown b_{j}\right) / 0$ such that $\left(a_{i, j} / 0\right) / \theta_{i, j}$ and $\left(b_{i, j} / 0\right) / \varphi_{i, j}$ are join-isomorphic, where $\theta_{i, j}$ is the modular ($a_{i, j} / 0, a_{i, j+1} / 0$)-congruence, and $\varphi_{i, j}$ is the modular ($b_{i, j} / 0, b_{i+1, j} / 0$)-congruence.

By Lemma 1, the join-isomorphism between the quotients $a_{i, j} / a_{i, j+1}$ and $b_{i, j} / b_{i+1, j}$ is obtained from $\left(a_{i, j} / 0\right) / \theta_{i, j} \cong\left(b_{i, j} / 0\right) / \varphi_{i, j}$. Hence the quotients $a_{i, j} / a_{i, j+1}$ and $b_{i, j} / b_{i+1, j}$ are also isomorphic as lattices. Therefore translating Theorem 2 into the language of lattices, we can immediately obtain the following usual theorem in lattices:

Theorem 3 (Schreier theorem in lattices). Let

$$
m=a_{0}>a_{1}>\cdots>a_{r}=n \text { and } m=b_{0}>b_{1}>\cdots>b_{s}=n
$$

be any two m / n-modular chains on 0 . Then these chains can be refined by interpolation of terms $a_{i, j}=a_{i+1} \smile\left(a_{i} \frown b_{j}\right)$ and $b_{i, j}=b_{j+1} \smile\left(a_{i} \frown b_{j}\right)$ such that corresponding quotients $a_{i, j} / a_{i, j+1}$ and $b_{i, j} / b_{i+1, j}$ are isomorphic.

References

[1] T. Fujiwara and K. Murata: On the Jordan-Hölder-Schreier theorem, Proc. Japan Acad., 29 (1953).
[2] T. Fujiwara: On the structure of algebraic systems, Proc. Japan Acad., 30 (1954).
[3] A. W. Goldie: The scope of the Jordan-Hölder theorem in abstract algebra, Proc. London Math. Soc., (3) 2 (1952).

[^0]: *) In this note, we shall use the theorems, the terms and the notations in [1] and [2], without the explanations.

