210 [Vol. 31,

49. Integrability of Trigonometrical Series. II

By Masako Satô

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., April 12, 1955)

1. We shall consider the trigonometrical series

$$\sum_{n=-\infty}^{\infty} c_n e^{inx}.$$

Given a sequence c_0, c_1, c_{-1}, \ldots such that $c_n \to 0$, let $c_0^* \ge c_1^* \ge c_{-1}^* \ge c_2^* \ge \cdots$ be the sequence $|c_0|, |c_1|, |c_{-1}|, \ldots$ arranged in the descending order of magnitude.

Recently R. P. Boas [1] proved the following

Theorem B. If $1 < q \le 2$, $1 \le p < q/(q-1)$, and $\alpha < 1-q/p'$, then (1) is the Fourier series of a function of L^p if $c_n \to 0$ and

(2)
$$\sum_{n=-\infty}^{\infty} |c_{n+m} - c_{n-m}|^q = O(m^a)$$

as $m \to \infty$ through the multiples of some fixed integer.

If $a \ge 1 - q/p'$ the conclusion no longer holds.

In this paper we prove the following theorems.

Theorem 1. If $q \ge 2$, $p \ge 1$, and $0 < \alpha < q/p - 1$, then (1) is the Fourier series of a function of L^p if $c_n \to 0$ and

(3)
$$\sum_{n=-\infty}^{\infty} (c_{n+m} - c_{n-m})^{*q} n^{q-2} = O(m^{\alpha})$$

as $m \rightarrow \infty$ through the multiples of some fixed integer.

If $\alpha = q/p-1$, $\alpha > q-2$, the conclusion no longer holds.

Theorem 2. If $q \ge 2$, $p \ge 1$, $q' \le r \le q$, $\mu = 1/r + 1/q - 1$, and $0 < \alpha < q/p - 1$, then (1) is the Fourier series of a function of L^p if $c_n \to 0$ and

(4)
$$\sum_{n=-\infty}^{\infty} |c_{n+m} - c_{n-m}|^{r} (|n|+1)^{-\mu r} = O(m^{\alpha r/q})$$

as $m \to \infty$ through the multiples of some fixed integer.

If $a \ge q/p-1$ the conclusion no longer holds.

In Theorem 2, if r=q' then it becomes Theorem B, and if r=q then it becomes Theorem 1 except star. Hence Theorem 2 contains Theorem B formally but Theorems 1 and 2 are mutually exclusive.

The proofs of Theorems 1 and 2 are similar to that of Theorem B, the difference being to use the following Theorems HL1 and HL2 [2], respectively, instead of the Hausdorff-Young theorem. We prove here Theorem 1 only.

Theorem HL 1. If $q \ge 2$ then (1) is the Fourier series of a function f(x) of L^q and

$$\left(\int_{-\pi}^{\pi}|f(x)|^qdx
ight)^{1/q}\!\leq\!A_q\!\left\{\sum_{n=-\infty}^{\infty}c_n^{*q}n^{q-2}
ight\}^{1/q}$$

where A_q depends on q only, if $c_n \rightarrow 0$ and

$$\left\{\sum_{n=-\infty}^{\infty}c_n^{*q}n^{q-2}\right\}^{1/q}<\infty.$$

Theorem HL 2. If $q \ge 2$, $q' \le r \le q$, and $\mu = 1/r + 1/q - 1$, then (1) is the Fourier series of a function f(x) of L^q and

$$\Big(\int_{-\pi}^{\pi} |f(x)|^q dx\Big)^{1/q} \leq A_q \Big\{ \sum_{n=-\infty}^{\infty} |c_n|^{r} (|n|+1)^{-\mu r} \Big\}^{1/r}$$

where A_q depends on q only, if $c_n \rightarrow 0$ and

$$\left\{\sum_{n=-\infty}^{\infty}|c_n|^r(|n|+1)^{-\mu r}\right\}^{1/r}<\infty.$$

2. Proof of the first part of Theorem 1. If (3) is satisfied for m=k, then by Theorem HL 1 $c_{n+k}-c_{n-k}$ are the *n*th Fourier coefficients of a function $\varphi_k(t)$ of L^q , i.e.,

$$c_{n+k}-c_{n-k}=rac{1}{2\pi}\int_{-\pi}^{\pi}e^{-int}arphi_{k}(t)dt.$$

The function $\varphi(t) = \varphi_k(t)/\sin kt$ belongs to L^q except perhaps in neighbourhoods of the points $0, \pm \pi/k, \pm 2\pi/k, \ldots, \pm \pi$. We have to show that $\varphi(t)$ actually belongs to L^p and has (c_n) as its Fourier coefficients. Now if m is a multiple of k, $\varphi(t) \sin mt$ is integrable, and

$$\int_{-\pi}^{\pi} e^{-int} \varphi(t) \sin mt \ dt = \int_{-\pi}^{\pi} e^{-int} \varphi_k(t) \frac{\sin mt}{\sin kt} dt = 2\pi (c_{n+m} - c_{n-m}).$$

Thus again by Theorem HL1 we have

$$\int_{-\pi}^{\pi} |\varphi(t) \sin mt|^q dt \leq A_q \sum_{n=-\infty}^{\infty} (c_{n+m} - c_{n-m})^{*q} n^{q-2},$$

where A_q depends on q only.

We shall prove the integrability of $\varphi(t)$ in a neighbourhood of t=0. By (3) and the inequality $\sin t \ge 2t/\pi$ for $0 \le t \le \pi/2$

$$\int_{0}^{1/m} |\varphi(t)|^{q} t^{q} dt \leq \frac{C}{m^{q}} \int_{-\pi}^{\pi} |\varphi(t) \sin mt|^{q} dt$$

$$\leq \frac{C}{m^{q}} \sum_{n=-\infty}^{\infty} (c_{n+m} - c_{n-m})^{*q} n^{q-2} \leq C m^{\alpha-q},$$

where C is an absolute constant. Since $|\varphi(t)\sin kt|^q$ is integrable, so is $t^p |\varphi(t)|^p$, $1 \le p \le q$. We put

$$F(t) = \int_0^t x^p |\varphi(x)|^p dx,$$

then for $\varepsilon < \pi/k$

$$\begin{split} \int_{1/m}^{\varepsilon} |\varphi(t)|^p \, dt &= \int_{1/m}^{\varepsilon} x^{-p} \, dF(x) \\ &= F(\varepsilon) \varepsilon^{-p} - F(1/m) m^p - p \int_{1/m}^{\varepsilon} F(x) x^{-p-1} dx. \end{split}$$

By Hölder's inequality with index q/p we have

$$F(1/m) = \int_{0}^{1/m} x^{p} |\varphi(x)|^{p} dx \leq \left\{ \int_{0}^{1/m} x^{q} |\varphi(x)|^{q} dx \right\}^{p/q} m^{-(q-p)/q} \\ \leq C m^{\{(a-p)p-(q-p)\}/q} = o(m^{-p}),$$

since $\alpha p < q-p$. Accordingly $F(1/m)m^p = o(1)$. And further F(t) is a non-decreasing function of t, if m=rk (r an integer) and 1/(r+1)k $\leq t \leq 1/rk$, we have $F(t) \leq Ct^u(u>p)$. Thus $F(x)x^{-p-1}$ is dominated by the integrable function x^{u-p-1} in a neighbourhood of 0, i.e.,

$$F(x)x^{-p-1} \leq Cx^{u-p-1}.$$

Thus we see that $\varphi(x)$ is L^p integrable in a neighbourhood of 0. The same proof applies for the L^p integrability of $\varphi(x)$ in neighbourhoods of $\pm \pi/k$, $\pm 2\pi/k$,..., $\pm \pi$.

3. Proof of the second part of Theorem 1. We shall consider the series used by R. P. Boas [1]

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

such that $c_n = n^{-r}(0 < \gamma < 1/q)$ for n > 0, $c_n = c_{-n}$, and $c_0 = 1$. Then f(x) is of order x^{r-1} as $x \to 0$ and consequently belongs to L^p for $p < 1/(1-\gamma)$ and not for $p \ge 1/(1-\gamma)$.

We shall now estimate the order of the series

$$\sum_{n=0}^{\infty} (c_{n+m} - c_{n-m})^{*q} n^{q-2} \quad \text{as } m \to \infty.$$

Writing $d_n = |c_{n+m} - c_{n-m}|$, we can see that $d_{m+1} \ge d_m \ge d_{m-1} \ge d_{m-2}$, and more generally $d_{m+k} \ge d_{m-k} \ge d_{m+k+1}$ for $k \ge \mu = (am)^{\delta}$, where $\delta = \gamma/(\gamma - 1)$ and $a = \gamma^{1/\gamma}$. Thus we have

$$\begin{split} \sum_{n=1}^{\infty} d_n^{*q} n^{q-2} & \leq (d_{m+1}^q + 2^{q-2} d_m^q + 3^{q-2} d_{m-1}^q + \dots + (2\mu)^{q-2} d_{m+\mu}^q) \\ & + \sum_{n=1}^{m-\mu} d_n^q (2\mu + n)^{q-2} + \sum_{n=m+\mu+1}^{\infty} d_n^q n^{q-2} \\ & \equiv S_1 + S_2 + S_3 \end{split}$$

say. Then, if $\gamma q < 1$,

$$egin{align*} S_1 &= \left\{ \left(1 - rac{1}{(2m+1)^{ au}}
ight)^q + 2^{q-2} \left(1 - rac{1}{(2m)^{ au}}
ight)^q + 3^{q-2} \left(1 - rac{1}{(2m-1)^{ au}}
ight)^q
ight\} \ &+ \sum_{k=2}^{\mu} \left\{ (2k)^{q-2} \left(rac{1}{k^{ au}} - rac{1}{(2m+k)^{ au}}
ight)^q + (2k+1)^{q-2} \left(rac{1}{k^{ au}} - rac{1}{(2m-k)^{ au}}
ight)^q
ight\} \ &\leq C \sum_{k=2}^{\mu} rac{1}{k^{ au q - q + 2}} \leq C \mu^{-(au q - q + 1)} = C m^{(- au q + q - 1) au/(1 - au)}, \ S_2 &= \sum_{n=1}^{m-\mu} \left(rac{1}{|n-m|^{ au}} - rac{1}{(n+m)^{ au}}
ight)(2\mu - n)^{q-2} \ &\leq C m^q \sum_{n=1}^{m-\mu} rac{n^q}{(n+m)^{2q}(m-n)^{ au q}} (2\mu + n)^{q-2} \ &= C m^q \left(\sum_{n=1}^{m/2} + \sum_{n=m/2+1}^{m-\mu}
ight) rac{n^q}{(n+m)^{2q}(m-n)^{ au q}} (2\mu + n)^{q-2} \ &\leq C m^{- au q + q - 2} \sum_{n=1}^{m/3} 1 + C m^{q-2} \sum_{\mu < k \leq m/2} k^{- au q} = C m^{q - au q - 1} \ \end{cases}$$

and

$$egin{align*} S_3 &= \sum\limits_{n=m+\mu+1}^{\infty} \left(rac{1}{\mid n-m\mid^{ ext{T}}} - rac{1}{(n+m)^{ ext{T}}}
ight)^q n^{q-2} \ &\leq C m^q \sum\limits_{n=m+\mu+1}^{\infty} rac{n^{2q-2}}{(n+m)^{2q}(n-m)^{ ext{T}q}} \ &= C m^q \left(\sum\limits_{n=m+\mu+1}^{2m} + \sum\limits_{n=2m+1}^{\infty}
ight) rac{n^{2q-2}}{(n+m)^{2q}(n-m)^{ ext{T}q}} \ &\leq C m^{q-2} \sum\limits_{n=m+\mu+1}^{2m} rac{1}{(n-m)^{ ext{T}q}} + C m^q \sum\limits_{n=2m+1}^{\infty} rac{1}{(n-m)^{ ext{T}q+2}} \ &= C m^{q- ext{T}q-1}. \end{split}$$

Collecting above estimations, we obtain

$$\sum_{n=1}^{\infty} d_n^{*q} n^{q-2} = O(m^{q-\gamma q-1}),$$

and hence, if we take γ such as $\alpha = q - \gamma q - 1$, that is, $\gamma = 1 - (\alpha + 1)/q$, then the condition (3) is satisfied, but since $q\gamma = q - \alpha - 1$, we get $q\gamma < 1$ when $q - 2 < \alpha$.

References

- [1] R. P. Boas: Integrability of trigonometrical series II, Math. Zeits., **55**, 183–186 (1952).
- [2] G. H. Hardy and J. E. Littlewood: Some new properties of Fourier constants, Math. Ann., 97, 159-209 (1926); Jour. London Math. Soc., 6, 3-9 (1931).
- [3] A. Zygmund: Trigonometrical series, Warszawa (1935).