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49. Integrability of Trigonometrical Series. II

By Masako SATO
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., April 12, 1955)

1. We shall consider the trigonometrical series

(1) ST eqe™e.

N=—00
Given a sequence ¢, ¢y, c_;,... such that ¢,—0, let ¢ >c¢f =c* =
¢¥ =>--- be the sequence |¢,l, |¢;l, |e-|,... arranged in the descending

order of magnitude.

Recently R. P. Boas [1] proved the following

Theorem B. If 1<q¢<2, 1<p<q/(g—1), and a<1—q/v’, .then
(Z) is the Fourier series of a function of L? if ¢,—~>0 and
( 2 ) 2 I Cnim— Cn-m [q:O(ma)

N=—0c0

as m—>co through the multiples of some fixed integer.
If a=1—q/p’ the conclusion no longer holds.
In this paper we prove the following theorems.

Theorem 1. If ¢=2, p=1, and 0<a<q/p—1, then (1) is the
Fourier series of a function of L* if c¢,—~>0 and
(3) S (Corm— ) 0082 = O(m?)

N=—00

as m—>o through the multiples of some fixed integer.
If a=q/p—1, a>q—2, the conclusion no longer holds.
Theorem 2. If ¢=2, p=1, ¢/ <r=<q, u=1/r+1jg—1, and

0<a<q/p—1, then (1) is the Fourier series of a function of L* if
cn—>0 and

( 4) ngml Cpim ™ Cp—m |r(| n|+ 1)—‘“‘: O(mdr/q)

as m—>o through the multiples of some fixed integer.

If a=q/p—1 the conclusion no longer holds.

In Theorem 2, if r=q' then it becomes Theorem B, and if r=q
then it becomes Theorem 1 except star. Hence Theorem 2 contains
Theorem B formally but Theorems 1 and 2 are mutually exclusive.

The proofs of Theorems 1 and 2 are similar to that of Theorem
B, the difference being to use the following Theorems HL 1 and

HL2 [2], respectively, instead of the Hausdorft-Young theorem.
We prove here Theorem 1 only.

Theorem HL 1. If q=2 then (1) is the Fourier series of a
Junction f(x) of L and
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(fﬂlf(m)lqdw)’/q éAq{ni c;qnq_z}x/q

=00
—T

where A, depends on q only, if ¢,—~>0 and

o /¢
{ > c;f"n“‘z} < oo,
n=—0c0

Theorem HL 2. If ¢=2, ¢/ <r=<q, and u=1/r+1/qg—1, then
(2) is the Fourier series of a function f(x) of L* and

<fﬂ1f(m) |qu>1/q éAq{;;i_m e (1) +1)_w}!/r

-7

where A, depends on q only, if c,—>0 and

{ni]wl eanl"(Im | +1)‘“"}w < oo,

2. Proof of the first part of Theorem 1. If (8) is satisfied
for m==Fk, then by Theorem HL1 ¢,,;—¢,.; are the nth Fourier
coefficients of a funetion ¢,(t) of L% i.e.,

Cnip— Cn—zx= ‘21: f ﬂe_mt¢7c(t)dt-

The function @(f)=q¢.(t)/sin kt belon_gs to L* except perhaps in neigh-
bourhoods of the points 0, ==k, =2n/k,..., ==7. We have to show
that @(t) actually belongs to L? and has (¢,) as its Fourier coeflicients.
Now if m is a multiple of %, ¢(f)sinmt is integrable, and
L . T 3 t
e~ "Mep(t) sin mt dt = f et gy (8) ST gy
[ o Pult) S5
=27(Crsm=— Cr-m)+
Thus again by Theorem HL 1 we have

S lo@®)sinmt 1dt < A, 3} Corm—Cu-m)*n",

- -

=—00

where A, depends on ¢ only.
We shall prove the integrability of ¢(¢) in a neighbourhood of £=0.
By (8) and the inequality sint¢ > 2t/= for 0 <t < /2

ym c - .
_0[ | p(t) 17t2dt ng-q—L | (¢) sin mt |2 dt

éi i (cn-l-m" n—m)*qnq—zé Cma—q’
mq N=—00
where C is an absolute constant. Since |@(f)sin k| is integrable,
so is t?| () |7, 1<p=<q. We put
F@o)= [o 9@ P da,
1]
then for e<=/k

f T o(t) P dt= f “5? dF (a)

1/m 1/m
=F (e ?*—F(1/mym*—p f F(x)x=?"'dgx,

1/m,
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By Holder’s inequality with index ¢/p» we have
1/m 1/m »/q
Fpmy= "o 1 o@ 1 dn <{ ["a 1 p@) 1da} meen
0 0

b Cmpie—mr-@-2}/a— o(m"’),
since ap < q—p. Accordingly F(1/m)m*=o0(1). And further F'({) is
a non-decreasing function of ¢, if m=rk (r an integer) and 1/(r+1)k
<t=<1/rk, we have F(t)<Ct*(u>p). Thus F(x)x~?! is dominated
by the integrable funetion x*~*-! in a neighbourhood of 0, i.e.,
F(x)x > < Cx* 271,

Thus we see that @(x) is L* integrable in a neighbourhood of 0.
The same proof applies for the L? integrability of @(x) in neigh-
bourhoods of =+=/k, +2=/k,..., =ar.

3. Proof of the second part of Theorem 1. We shall consider
the series used by R. P. Boas [1]

F@ = 31 oo

such that ¢,=n""(0<vy<1/q) for n>0, ¢,=c_,, and ¢,=1. Then f(x)
is of order ™! as x>0 and consequently belongs to L? for p<1/(1—v)
and not for p=1/(1—v).

We shall now estimate the order of the series
S (Crsm—Crp—m)* M2 as m-—»> oo,
n=0
Writing d,=|Cusm—Cp-m|, We can see that dy.,=dn=dn 1=dn-,, and

more generally d,,.,=>dw_1=@mir+1 for k=u=(am)’, where d=v/(y—1)
and a=«*". Thus we have

S < (B 2+ B - (2R
n=1
+ S d@utnyt + S die
n=1

n=m+pw+l
=81+S:+ S
say. Then, if yg<1,

Si= Kl_ (2%111?)5“ 2,,_2<1__ (Zin)" N 3‘1_2(1 B @n%f)‘*)q}

S 2 1 1 a o1 1 q
2k — - = o2k g-2( 4 L
+ 2 {ew(L (2m+k)?) @+ (3 (2m—-k)*>}
=C gﬁ < Cu= M99+ D = O rara-Dr/-m

Ky 1 1 -
S,= — 2u—mn)t?
2 n%(ln—mlf (n+m),.>(l‘ n)

m— nq

< Cm? —(2u+n)?

=
m/3 m—u nq

- q 2 q-2

Cm ( >} +n_m2/2+1) (Y (m—ny® (2u+mn)

< COm~v1*e2 mz/i 1+Cm2 ) k= Cme-79-1

n=1 plesm/3
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and

& 1 1 ) -
S, — b L Ve
? n-=m2+u+1< [n—m |  (n+m)" "
< Cmt S e
= B Ep] (n + m)*(n—m)

—om( S o+ 5

n=mtu+l  n=an+l (n + m)z"(n— m)*“

< Cme-2 22"3 1 ¢ < 1

= Um* —_— m [ S
- n=mru+l (B—m)"? nsimi1 (0 —m)rets
= Cmt 1,

Collecting above estimations, we obtain

1 dintt = O(me=),

n=1

and hence, if we take v such as a=q—yg—1, that is, y=1—(a+1)/q,

then the condition (3) is satisfied, but since gy=g—a—1, we get
qy<1 when ¢—2<a.

References

[1] R. P. Boas:
(1952).
[2] G. H. Hardy and J. E. Littlewood: Some new properties of Fourier constants,

Math. Ann., 97, 159-209 (1926); Jour. London Math. Soc., 6, 3-9 (1931).
[8] A. Zygmund: Trigonometrical series, Warszawa (1935).

Integrability of trigonometrical series II, Math. Zeits., 55, 183-186



