47. On the Riesz Logarithmic Summability of the Conjugate Derived Fourier Series. II ${ }^{1)}$

By Masakiti Kinukawa

Mathematical Institute, Tokyo Metropolitan University, Japan
(Comm. by Z. Suetuna, m.J.A., April 12, 1955)
5. Proof of Theorem 2. We shall consider the integral

$$
\begin{aligned}
I_{1} & =\frac{1}{(\log \omega)^{\alpha+1}} \int_{0}^{\pi} g_{\alpha}(t) \frac{1-\cos \omega t}{t} d t, \quad(\alpha \geqq 0), \\
& =\frac{1}{(\log \omega)^{\alpha+1}}\left\{\int_{0}^{\pi / \omega}+\int_{\pi / \omega}^{\pi}\right\}=I_{1,1}+I_{1,2}
\end{aligned}
$$

say. Integrating by parts, we have

$$
\begin{aligned}
I_{1,1} & =\frac{1}{(\log \omega)^{\alpha+1}}\left[g_{\alpha}^{1}(t) \frac{1-\cos \omega t}{t}\right]_{0}^{\pi / \omega} \\
& -\frac{1}{(\log \omega)^{\alpha+1}} \int_{0}^{\pi / \omega} g_{\alpha}^{1}(t) \frac{t \omega \sin \omega t-(1-\cos \omega t)}{t^{2}} d t \\
& =o\left[\frac{1}{(\log \omega)^{\alpha+1}}(\log \omega)^{\alpha}\right]+o\left[\frac{\omega^{2}}{(\log \omega)^{\alpha+1}} \int_{0}^{\pi / \omega} t\left(\log \frac{1}{t}\right)^{\alpha} d t\right] \\
& =o(1 / \log \omega)=o(1)
\end{aligned}
$$

since $g_{\alpha}^{1}(t)=o\left[t(\log 1 / t)^{\alpha}\right]$ by the assumption of Theorem 2. Also

$$
\begin{aligned}
I_{1,2} & =\frac{1}{(\log \omega)^{\alpha+1}} \int_{\pi / \omega}^{\pi} \frac{g_{\alpha}(t)}{t} d t-\frac{1}{(\log \omega)^{\alpha+1}} \int_{\pi / \omega}^{\pi} \frac{g(t)}{t} \cos \omega t d t \\
& =I_{1,2,1}-I_{1,2,2}
\end{aligned}
$$

say, where

$$
I_{1,2,1}=\frac{1}{(\log \omega)^{\alpha+1}}\left[\frac{g_{\alpha}^{1}(t)}{t}\right]_{\pi / \omega}^{\pi}+\frac{1}{(\log \omega)^{x+1}} \int_{\pi / \omega}^{\pi} g_{\alpha}^{1}(t) \frac{1}{t^{2}} d t=o(1)
$$

and

$$
\begin{aligned}
& 2(\log \omega)^{\alpha+1} I_{1,2,2}=2 \int_{\pi / \omega}^{\pi} g_{\alpha}(t) \frac{\cos \omega t}{t} d t \\
& \quad=\int_{\pi / \omega}^{3 \pi / \omega} g_{\alpha}(t) \frac{\cos \omega t}{t} d t+\int_{\pi}^{\pi+\pi / \omega} g_{\alpha}(t) \frac{\cos \omega t}{t} d t \\
& \quad+\int_{\pi / \omega}^{\pi}\left\{\frac{g_{\alpha}(t)}{t}-\frac{g_{\alpha}(t+\pi / \omega)}{t+\pi / \omega}\right\} \cos \omega t d t
\end{aligned}
$$

The first term of the above expression is $o\left[(\log \omega)^{a+1}\right]$, as in the estimation of $I_{1,1}$ and the second term is $o(1)$, as easily may be seen. On the other hand, the third term becomes

$$
\int_{\pi / \omega}^{\pi} \frac{g_{\alpha}(t)-g(t+\pi / \omega)}{t} \cos \omega t d t
$$

1) Continued from p. 125. References are cited on p. 125.

$$
\begin{aligned}
& \quad+\int_{\pi / \omega}^{\pi} g_{a}(t+\pi / \omega)\left\{\frac{1}{t}-\frac{1}{t+\pi / \omega}\right\} \cos \omega t d t \\
& =o\left[(\log \omega)^{\alpha+2}\right]+\frac{\pi}{\omega} \int_{\pi / \omega}^{\pi} g_{\alpha}(t+\pi / \omega) \frac{\cos \omega t}{t(t+\pi / \omega)} d t \\
& = \\
& o\left[(\log \omega)^{\alpha+2}\right]+\frac{\pi}{\omega}\left[g_{\alpha}^{1}(t+\pi / \omega) \frac{\cos \omega t}{t(t+\pi / \omega)}\right]_{\pi / \omega}^{\pi} \\
& \\
& \quad+\int_{\pi / \omega}^{\pi} g_{a}^{1}(t+\pi / \omega)\left\{\frac{1}{t^{2}}-\frac{1}{(t+\pi / \omega)^{2}}\right\} \cos \omega t d t \\
& \\
& \quad-\frac{\pi}{\omega} \int_{\pi / \omega}^{\pi} g_{\alpha}^{1}(t+\pi / \omega) \frac{\omega \sin \omega t}{t(t+\pi / \omega)} d t=o\left[(\log \omega)^{\alpha+2}\right] .
\end{aligned}
$$

Collecting the above estimations, we find $I_{1,2,2}=o(\log \omega)$. Hence we get $I_{1,2}=o(\log \omega)$. Thus we have

$$
\begin{equation*}
\frac{1}{(\log \omega)^{\alpha+2}} \int_{0}^{\pi} g_{\alpha}(t) \frac{1-\cos \omega t}{t} d t=o(1), \text { as } \omega \rightarrow \infty \tag{5.1}
\end{equation*}
$$

Integrating by parts and using the assumption of Theorem 2, we get $g_{\alpha+1}(t)=o\left[(\log 1 / t)^{\alpha+1}\right]$, and hence, as in the estimation of (4.6), we can see

$$
\begin{equation*}
\frac{1}{(\log \omega)^{\alpha+2}} \int_{0}^{\pi} g_{\alpha+1}(t) \frac{1-\cos \omega t}{t} d t=o(1) . \tag{5.2}
\end{equation*}
$$

Thus, by (4.6), (5.1), and (5.2), we get Theorem 2.
6. Proof of Theorem 3. We require some lemmas.

Lemma 3.2) If $g_{\alpha}^{1+\delta^{\prime}}(t)=o\left[t^{1+\delta^{\prime}}(\log 1 / t)^{\alpha}\right]$, for $\alpha>0$ and $\delta>\delta^{\prime}>0$, then $g_{\alpha+1+\delta}(t)=o\left[(\log 1 / t)^{\alpha+1+\delta}\right]$, as $t \rightarrow 0$.

Lemma 4. ${ }^{3)}$ If we suppose that $g_{\alpha}^{1}(t)=o\left[t(\log 1 / t)^{\beta}\right]$, then $g_{\alpha}^{1+\delta}(t)$ $=o\left[t^{1+\delta}(\log 1 / t)^{\beta}\right]$, where $\delta>0$ and $\beta \geqq 0$.

Lemma 5.4) For $\alpha \geqq 0, \delta>0$, we have

$$
g_{\alpha}^{1+\delta}(t)-g_{\alpha+1}^{1+\delta}(t)=\delta g_{\alpha+1}^{1+\delta}(t)-t g_{\alpha+1}^{\delta}(t) .
$$

We shall now prove Theorem 3. By the assumption of the theorem and by the formula (4.5), we get

$$
\int_{0}^{\pi}\left[g_{\alpha-2}(t)-g_{\alpha-1}(t)\right] \frac{1-\cos \omega t}{t} d t=o\left[(\log \omega)^{\alpha}\right]
$$

However, by integration by parts,

$$
\begin{aligned}
& \int_{0}^{\pi}\left[g_{\alpha-2}(t)-g_{\alpha-1}(t)\right] \frac{1-\cos \omega t}{t} d t \\
= & -\left[\left\{g_{\alpha-1}(t)-g_{\alpha}(t)\right\}(1-\cos \omega t)\right]_{0}^{\pi}+\omega \int_{0}^{\pi}\left[g_{\alpha-1}(t)-g_{a}(t)\right] \sin \omega t d t \\
= & \omega \int_{0}^{\pi}\left[g_{\alpha-1}(t)-g_{\alpha}(t)\right] \sin \omega t d t .
\end{aligned}
$$

2) Cf. Wang [6], Lemma 7.
3) Cf. Wang [4], Lemma 2.
4) Cf. Matsuyama [2].

Hence we have

$$
\int_{0}^{\pi}\left[g_{\alpha-1}(t)-g_{\alpha}(t)\right] \sin \omega t d t=o\left[(\log \omega)^{\alpha} / \omega\right] .
$$

We put $\gamma(t)=g_{\alpha-1}(t)-g_{\alpha}(t)$ and

$$
\gamma(t) \sim \sum_{n=1}^{\infty} b_{n}^{(\alpha)} \sin n t, t \in(0, \pi)
$$

then the above argument shows that $b_{n}^{(\alpha)}=o\left[(\log n)^{\alpha} / n\right]$. Using the theorem that Fourier series may be integrated term by term, we have

$$
\begin{aligned}
& \frac{1}{t} \int_{0}^{t} \gamma(u) d u=\sum_{n=1}^{\infty} b_{n}^{(\alpha)} \frac{1-\cos n t}{n t} \\
= & \sum_{n t<1} o\left[(\log n)^{\alpha} / n\right] O\left(n^{2} t^{2} / n t\right)+\sum_{n t \geq 1} o\left[(\log n)^{\alpha} / n\right] O(1 / n t)=o\left[(\log 1 / t)^{\alpha}\right] .
\end{aligned}
$$

Thus we obtain, by Lemma $3, \gamma^{1+\delta}(t)=o\left[t^{1+\delta}(\log 1 / t)^{d}\right]$.
By Lemma 4, this implies that

$$
\delta g_{\alpha}^{1+\delta}(t)-t g_{\alpha}^{\delta}(t)=o\left[t^{1+\delta}(\log 1 / t)^{\alpha}\right] .
$$

On the other hand

$$
\delta g_{\alpha}^{1+\delta}(t)-t g_{\alpha}^{\delta}(t)=\delta g_{\alpha}^{1+\delta}(t)-t \frac{d}{d t} g_{\alpha}^{1+\delta}(t)=-t^{1+\delta} \frac{d}{d t}\left[t^{-\delta} g_{\alpha}^{1+\delta}(t)\right]
$$

Hence $\frac{d}{d t}\left[t^{-\delta} g_{\alpha}^{1+\delta}(t)\right]=o\left[(\log 1 / t)^{\alpha}\right] . \quad$ But $t^{-\delta} g_{\alpha}^{1+\delta}(t)=O\left(\int_{0}^{t}\left|g_{\alpha}(u)\right| d u\right)$ $=o(1)$. Accordingly $t^{-\delta} g_{\alpha}^{1+\delta}(t)=o\left\{\int_{0}^{t}(\log 1 / u)^{\alpha} d u\right\}=o\left[t(\log 1 / t)^{\alpha}\right]$, that is, $g_{\alpha}^{1+\delta}(t)=o\left[t^{1+\delta}(\log 1 / t)^{\alpha}\right]$. Thus, by Lemma 2, we have

$$
g_{\alpha+1+\delta^{\prime}}(t)=o\left[(\log 1 / t)^{\alpha+1+\delta^{\prime}}\right], \delta^{\prime}>\delta>0
$$

which is the required result.
7. Further we shall prove the following theorem with stronger assumption and conclusion.

Theorem 4. If we suppose that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\varphi(t)}{t}=0 \quad(R, \log , \alpha) \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 0} g(t)=0 \quad(R, \log , \alpha), \tag{7.2}
\end{equation*}
$$

then the conjugate derived Fourier series of $f(t)$ is $(R, \log , \alpha+1)$ summable to s at the point x, where $1>\alpha>0$ and $g(t), \varphi(t)$ are defined as in §2.

Proof. Let $\xi(t)=\varphi(t) / t$. Then, by (4.1), we have

$$
\begin{aligned}
\frac{\pi}{2}\left\{R_{\alpha+1}(\omega)-s\right\} & =\frac{\omega}{(\log \omega)^{1+\alpha}} \int_{0}^{\infty} \xi(t)\left[(\alpha+1) S_{\alpha}(\omega t)-S_{\alpha+1}(\omega t)\right] d t \\
& =(\alpha+1) I_{1}-I_{2}
\end{aligned}
$$

say. Hence it is sufficient to show that I_{1} and I_{2} are $o(1)$. For this purpose, we firstly devide I_{1} into three parts;

$$
I_{1}=\frac{\omega}{(\log \omega)^{1+\alpha}}\left\{\int_{0}^{i \pi}+\int_{\pi}^{\omega^{\Delta}}+\int_{\omega^{\Delta}}^{\infty}\right\}=I_{1,1}+I_{1,2}+I_{1,3}
$$

where $\Delta=(1-\alpha) / \alpha>0$. If we put $\xi^{1}(t)=\int_{0}^{t} \xi(u) d u$ and $\xi^{*}(t)=$ $\int_{0}^{t}|\xi(u)| d u$, then

$$
\begin{aligned}
I_{1,3} & =\frac{\omega}{(\log \omega)^{1+\alpha}}\left[\xi^{1}(t) S_{\alpha}(\omega t)\right]_{\omega^{\Delta}}^{\infty}-\frac{\omega^{2}}{(\log \omega)^{1+\alpha}} \int_{\omega^{\Delta}}^{\infty} \xi^{1}(t) S_{\alpha}^{\prime}(\omega t) d t \\
& =\frac{-\omega}{(\log \omega)^{1+\alpha}}\left[\xi^{1}\left(\omega^{\Delta}\right) S_{\alpha}\left(\omega^{1+\Delta}\right)\right]+\frac{\omega^{2}}{(\log \omega)^{1+\alpha}} \int_{\omega^{\Delta}}^{\infty} \frac{1}{(\omega t)^{1+\alpha}} O(1) d t,
\end{aligned}
$$

which is $o(1)$ by $\xi^{1}(t)=O(1)$ and (3.2), and, by (3.1),

$$
\begin{aligned}
I_{1,2}= & O\left\{\frac{\omega}{(\log \omega)^{1+\alpha}} \int_{\pi}^{\omega^{\Delta}}|\xi(t)| \frac{(\log \omega t)^{\alpha-1}}{\omega t} d t\right\} \\
= & O\left\{\frac{1}{(\log \omega)^{1+\alpha}}\left[\xi^{*}(t) \frac{(\log \omega t)^{\alpha-1}}{t}\right]_{\pi}^{\omega^{\Delta}}\right. \\
& \left.+\frac{1}{(\log \omega)^{1+\alpha}} \int_{\pi}^{\omega^{\Delta}} \xi^{*}(t)\left[\frac{(\log \omega t)^{\alpha-1}}{t^{2}}+\frac{(\log \omega t)^{\alpha-2}}{t^{2}}\right] d t\right\}=O(1 / \log \omega) \\
= & o(1),
\end{aligned}
$$

since $\xi^{*}(t)=O(t)$. Thus we have

$$
\begin{aligned}
I_{1} & =\frac{\omega}{(\log \omega)^{1+\alpha}} \int_{0}^{\pi} \xi(t) S_{\alpha}(\omega t) d t \\
& =o(1)+\Gamma(1+\alpha) \frac{\omega}{(\log \omega)^{1+\alpha}} \int_{0}^{\pi} \xi_{\alpha}(u) S_{0}(\omega u) d u
\end{aligned}
$$

similarly as in the proof of (4.3). Thus we have $I_{1}=o(1)$, as $\omega \rightarrow \infty$ (cf. the proof of (4.7)).

On the other hand, using the condition (7.2), we can show similarly as in the proof of Theorem 1 that $I_{2}=o(1)$. Combining these results, we get the required result.
8. We conclude this paper by stating two theorems of similar type, without proof.

Theorem 5.5) Let $\varphi(t)=\varphi(x, t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 s\}$.
Suppose that

$$
\int_{0}^{t} \varphi_{a-1}(u) d u=o\left[t(\log 1 / t)^{\alpha}\right], \text { as } t \rightarrow 0
$$

and

$$
\int_{t}^{\pi} \frac{\left|\varphi_{\alpha-1}(u+t)-\varphi_{\alpha-1}(u)\right|}{u} d u=O\left[(\log 1 / t)^{\alpha}\right]
$$

Then the necessary and sufficient condition that the Fourier series of
5) Of. Wang [4], Theorem B and Takahashi [3].
$f(t)$ should be summable (R, \log , α), for $t=x$, to sum s, is that

$$
\lim _{t \rightarrow 0} \varphi(t)=0 \quad(R, \log , \alpha)
$$

where $\alpha \geqq 1$.
Theorem 6. ${ }^{6)}$ Let $h(t)=(1 / \pi) \int_{t}^{\infty}\{f(x+u)-f(x-u)\} / u d u-s$.
If we suppose that

$$
\int_{0}^{t} h_{\alpha}(u) d u=o\left[t(\log 1 / t)^{\alpha}\right], \text { as } t \rightarrow 0
$$

and

$$
\int_{t}^{\pi} \frac{\left|h_{\alpha}(u+t)-h_{\alpha}(u)\right|}{u} d u=o\left[(\log 1 / t)^{\alpha+1}\right] \text {, as } t \rightarrow 0
$$

then the conjugate Fourier series of $f(t)$ is $(R, \log , \alpha+1)$ summable to sum s at the point x, where $\alpha \geqq 0$.
6) Cf. Wang [7], Theorem 1.

