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say.

5 Proof of Theorem 2. We shall consider the integra!
1 g(t) 1--eoswt dr, (aO),

(to);+l.J + =i,, +I,,,

Integrating by parts, we have

J g(t) t sin ,t-(1- cos t)
(log )/ --o t

dt

 )oJ ,o[
o(1/log )= o(1),

since g(t)=o[t(log 1/t) by the assumption of Theorem 2. Also

L’= (log)+ (log)+ J t
/ /

say, where

f 1I1,2,1=

and

2(log o)+/,,=2 g(t) .cos ot dt
t

J g(t) cos..tdt +j g(t) cos t
t t

+f(t) (t+/),}o t t.
t t +/

The firs erm of the above expression is o[(log)+j,
estimation of I, nd he second erm is o(1), s easily may be
seen. On he oher hand, he hird erm becomes

1) Continued from p. 125. References are cited on p. 125.
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1 }+ g(t + r/)
(t + r/)

cos t dt-- g(t +/)
t(t +1)

Collecting the above estimations, we find I,,=o(log w). Hence we
get L.=o(log w). Thus we have

1 1- cos wt
j g (t)

t
as

Integrating by parts and using the assumption of Theorem 2, we
get g+(t)=o(log 1/ty+, and hence, as in the estimation of (4.6),
we can see

1 g+,(t) 1-cos t dt-o(1).(5.2)
(log w)+ t

Thus, by (4.6), (5.1), and (5.2), we get Theorem 2.. Proof of Theorem 3. We require some lemmas.
+’t [t+’(logl/t)], for a>0 and 8>8’>0,Lemma 3 If g ()=o

then g+t+,(t)-o[(logl/ty+t+*, as tO.
Lemma 4. If we suppose that g(t)-o[t(logllt)], then g+*(t)

=o[t+*(logl/t)’], where >0 and BO.
Lemma .a For aO, $>0, we have

1+6g+*(t)---+*t--g.(t) tg,+ (t)a+lk J

We shall now prove Theorem 3. By the assumption of the
theorem and by the formula (4.5), we get

t

However, by integration by parts,

_(t)-g_,(t 1-cost dt
t

2) Cf. Wang [6], Lemma 7.
3) Cf. Wang [4], Lemma 2.
4) Cf. Matsuyama [2J.
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Theorem 4.

Hence we have

We put 7(t)----g_,(t)-g(t) and

7(t) b") sin nt, t (0, ),

then the above argument shows that b)=o[(log n)/n]. Using the
theorem that Fourier series may be integrated term by term, we
have

1 7udu b 1-cos nt

[(o)’I]0(I) + o[(]o)’I]O(I)=o[(] I)].

y Lemm8 , this
+()-() o[

0n the other hsnd

$g+(t) tg(t) $g+(t)- t g+6(t) t + d t g (t).
dt

is, *(t)=o[t*(lo 1#)}. hus, by Lemma 2, we have

which is he required result.
7. urher we shall rove he foliowin heorem wih sronger

assumption and conclusion.

tO t

lim g(t)--O (R, log, a),

then the conjugate derived Fourier series of f(t) is (R, log, a+l)
summable to s at the point x, where 1 >a>0 and g(t), q(t) are defined
as in .

Proof. Let (t)--q(t)/t. Then, by (4.1), we have

-{R+,()-s}-, (iogL-i+j f’8(t)[(a+ 1)S(t)- S+,(t)]dt
=(+)L-,

say. Hence it is sufficient to show that L and I are o(1). For
this purpose, we firstly devide I into three parts;
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/,---(log ),+<,
/

where A (1 )l > O. If we put (t) ()de and

which is o(1) by $(t)=O(1) and (.2), and, br (.1),

I,,==0
(log )*+=

(t) (log t)

(loe)-=0{-(log ),+ L,* (t)
t

1 (igot)*-tt + (igot)-.Jdt}=O(1/log,)t+
(log )*+*

=0(1),
since $*(t)-O(t). Thus we have

I,=
(log )*+*

e(t)&(ot) dt
0

$(u)mo(U) du,=o(1)+ (1+)
(lo )’+

similarly as in the proof of (4.3). Thus we have I-o(1), as
(cf. the proof of (4.7)).

On the other hand, using the condition (7.2), we can show
similarly as in the proof of Theorem 1 th Is-o(1). Combining

these results, we get the required result.
8. We conclude this paper by stating two theorems of similar

type, without proof.

Theorem .s) Let (t)=(x,t)-f(x+t)+f(x-t)-2s}.
Suppose that

m_,(u)d-o (loll) as

and

f= _,(u+ t)--_,(u) du _O[(log l/t)7.u
Then the necessary and sucient condition that the Fourier series of

5) Gf. Wang [4], Theorem B and Takahashi 3].
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f(t) should be summable (R, log, a), for t=x, to sum s, is that
lira o(t)=0 (R, log, a),

where a >_ 1.

Theorem 6.6)

If we suppose that

and

Le h(t)= (1/)f(f(x+u)- f(x- u)} /u du- s.

fo():o[t(o /t)o1, t - o,

f’I (+t)-h(u) du-o[(oa 1/t)/l, as t->O,
u

then the conjugatv Fourier series of f(t) is (R, log, a+l) summable
to sum s at the point x, where aO.

6) Cf. Wang [TJ, Theorem 1.


