98. On Factor Set of the Third Obstruction

By Katuhiko MIZUNO

Department of Mathematics, Osaka City University (Comm. by K. KUNUGI, M.J.A., July 12, 1955)

The object of the present note¹⁾ is to give the third obstruction theorem for mappings of a geometric complex K into a topological space Y such that

 $\pi_i(Y) = 0$ for $0 \le i < n$, n < i < q, and q < i < r < 2q-1, along the line of Eilenberg-MacLane.²⁾

For such a space Y we described previously³⁾ the cohomology class $\boldsymbol{k}_{n,q}^{r+1}$ of $H^{r+1}(\pi_n, \pi_q, \boldsymbol{k}_n^{q+1}; \pi_r)^{4)}$ as a topological invariant if we pay no heed to the identification of the complexes $K(\pi_n, n, \pi_q, q, k)$, where $\boldsymbol{k}_n^{q+1} = \boldsymbol{k}_n^{q+1}(Y)$ is the Eilenberg-MacLane invariant of the space Y.

In this paper we shall introduce new operators \boldsymbol{y}_{τ} and \boldsymbol{y}_{τ} . And by making use of $\boldsymbol{k}_{n,q}^{r+1}$, $\boldsymbol{k}_{n,q}^{r+1}$, we shall describe a factor set of the third obstruction of a map.

1. As a preliminary to the definition of the basic operators, we shall consider first certain maps.

We wish to classify simplicial maps T of a C.S.S. complex Kin $K(\Pi, n, \Pi', q, k)$. Such a map determines a cocycle $x_n = T^{\#}b_n \in Z^n(K; \Pi)$ and a cochain $x_q = T^{\#}b_q \in C^q(K; \Pi')$, where b_n is the basic cocycle in $Z^n(\Pi, n, \Pi', q, k; \Pi) \cong Z^n(\Pi, n; \Pi)$ and b_q is the basic cochain in $C^q(\Pi, n, \Pi', q, k; \Pi')$ defined by setting

$$b_n(\phi, \psi) = \phi(\varepsilon_n), \qquad b_q(\phi, \psi) = \psi(\varepsilon_q).$$

Lemma 1. Given the complex $K(\Pi, n, \Pi', q, k)$ and the C.S.S. complex K, the rule $T \rightarrow (x_n, x_q)$ establishes a one to one correspondence between simplicial maps and pairs (x_n, x_q) satisfying the conditions:

 $x_n \in Z^n(K; \Pi), \ x_q \in C^q(K; \Pi'), \ kT(x_n) + \delta x_q = 0.$

The map T corresponding in this fashion to the pair (x_n, x_q) will be denoted by $T(x_n, x_q)$. Then $T(x_n, x_q)$ is characterized as

¹⁾ Full details will appear in the Journal of the Institute of Polytechnics, Osaka City University.

²⁾ S. Eilenberg and S. MacLane: On the groups $H(\Pi, n)$, III, Ann. Math., **60**, 513-557 (1954). Present note makes full use of the results and terminology of this paper.

³⁾ K. Mizuno: On the minimal complexes, Jour. Inst. Polytech., Osaka City Univ., 5, 41-51 (1954).

⁴⁾ For the sake of brevity, we write in the following $\pi_n = \pi_n(Y)$, $\pi_q = \pi_q(Y)$, and $\pi_r = \pi_r(Y)$.

 $T(x_n, x_q) = \gamma [i_n \times i_q] [T(x_n) \times T(x_q)] e$

where i_n and i_q are natural inclusions.

For our future convenience, we now derive an explicit formula for the automorphism $\eta(\phi, \psi) = (\phi', \psi')$ such that

 $\eta: K(\Pi, n, \Pi', q, k) \rightarrow K(\Pi, n, \Pi', q, k)$

 $\phi \equiv \phi'$ for any (ϕ, ψ) of $K(\Pi, n, \Pi', q, k)$.

According to Lemma 1, such a map η is represented as $T(b_n, b'_q)$ where b_n is the basic cocycle defined above and $b'_q = \eta^{\#} b_q$ is a cochain of $C^q(\Pi, n, \Pi', q, k; \Pi')$. Generally b'_q is different from b_q and induces a cocycle $h_q = b'_q - b_q$ of $Z^q(\Pi, n, \Pi', q, k; \Pi')$.

Lemma 2. Given the complex $K(\Pi, n, \Pi', q, k)$, the rule $\eta \rightarrow h_q$ establishes a one to one correspondence between the chain homotopic class of η and the cohomology class of h_q .

The map η corresponding in this fashion to the cocycle h_q will be denoted by $\eta(h_q)$, then $\eta(h_q)$ is characterized as

$$\eta(h_q) = T(b_n, b_q) \circ i_q T(h_q)$$

where \circ is the internal product in the complex $K(\Pi, n, \Pi', q, k)$ and $T(b_n, b_q)$ is obviously the identity map.

If we replace x_q in the formula $T(x_n, x_q)$ by another x'_q , we have a cocycle $d_q = x'_q - x_q \in Z^q(K; \Pi')$, and successively, the map $T(x_n, x'_q)$ is represented by

$$T(x_n, x'_q) = T(x_n, x_q) \circ i_q T(d_q).$$

Therefore if we identify the complex $K(\Pi, n, \Pi', q, k)$ with the image of the automorphism η , we can identify $T(x_n, x'_q)$ with $T(x_n, x_q)$. Then we shall define $\tau(x_n)$ as the family of $T(x_n, x_q)$ where x_n is a fixed cocycle of $Z^n(K; \Pi)$ satisfying $kT(x_n) \sim 0$.

Lemma 3. The cocycles $x_n^1, x_n^2 \in Z^n(K; \Pi)$ such that $kT(x_n^1) \sim 0^{\gamma} \sim kT(x_n^2)$ are cohomologous if and only if the families $\tau(x_n^1), \tau(x_n^2)$ are chain homotopic.⁵⁾

Given two C.S.S. pairs (K, L_1) , (K, L_2) and two cocycles $x_n \in Z^n(K, L_1; \Pi)$, $x_q \in Z^q(K, L_2; \Pi')$, we shall define a chain transformation $\gamma_{n,q}(x_n, x_q) : (K, L) \to K(\Pi, n, \Pi', q, k)$

for each simplex σ (dim $\sigma \leq 2q$) as

$$\gamma_{n.q}(x_n, x_q)\sigma \!=\! \gamma g[i_n \!\otimes\! i_q][R(x_n) \!\otimes\! R(x_q)] fe\sigma$$

where L is the union of the subcomplexes L_1 , L_2 .

Replacement of x_n or x_q by a cohomologous cocycle replaces $R(x_n)$ or $R(x_q)$ by a chain homotopic map, therefore, the homotopy class of the map $\gamma_{n,q}$ depends only on the cohomology classes x_n , x_q of x_n , x_q respectively.

2. Take abelian groups Π , Π' , and G, positive integers n, q, and

415

No. 7]

⁵⁾ Namely, $\tau(x_n^1)$ and $\tau(x_n^2)$ contain $T(x_n^1, x_q^1)$, $T(x_n^2, x_q^2)$: $K \to K(\Pi, n, \Pi', q, k)$ respectively and $T(x_n^1, x_q^1) \cong T(x_n^2, x_q^2)$.

r (1 < n < q < r < 2q), a cohomology class $k \in H^{q+1}(\Pi, n; \Pi')$, and a cohomology class $y \in H^r(\Pi, n, \Pi', q, k; G)$ where k is a fixed cocycle of y.

The γ -operator \boldsymbol{y}_{τ} is defined for cohomology classes $\boldsymbol{x}_n \in H^n(K, L_1; \Pi)$ and $\boldsymbol{x}_q \in H^q(K, L_2; \Pi')$ by the formula

$$\boldsymbol{y}_{\boldsymbol{\gamma}}(\boldsymbol{x}_n, \, \boldsymbol{x}_q) = \boldsymbol{\gamma}_{n \cdot q}(\boldsymbol{x}_n, \, \boldsymbol{x}_q)^* \boldsymbol{y};$$

this is an element of $H^r(K, L; G)$.

Let $\boldsymbol{x}_n \in H^n(K; \Pi)$ be a cohomology class whose representative cocycle \boldsymbol{x}_n satisfies $kT(\boldsymbol{x}_n) \sim 0$. The τ -operator \boldsymbol{y}_{τ} is defined for such a class \boldsymbol{x}_n by the formula

$$\boldsymbol{y}_{\tau}(\boldsymbol{x}_n) = \tau(\boldsymbol{x}_n)^* \boldsymbol{y};$$

this is a family of elements of $H^r(K; G)$.

Theorem 4. For $\mathbf{x}_n \in H^n(K; \Pi)$ such that $\mathbf{k} \vdash \mathbf{x}_n = 0$, we can determine an element $\mathbf{y}_{\tau}(\mathbf{x}_n)$ of the factor group $H^r(K; G)$ mod $\mathbf{y}_{\tau}(\mathbf{x}_n, H^q(K; \Pi')) + i_q^* \mathbf{y} \vdash H^q(K; \Pi')$ whose generator is represented by the formula $\mathbf{y}_{\tau}(\mathbf{x}_n, \mathbf{x}_q) + i_q^* \mathbf{y} \vdash \mathbf{x}_q$, where \mathbf{x}_q is any cohomology class going round the group $H^q(K; \Pi')$.

3. It is well known that the cohomology classes $\boldsymbol{k}_{n}^{q+1}(Y) \in H^{q+1}(\pi_n, n; \pi_q)$ and $\boldsymbol{k}_q^{r+1}(Y) \in H^{r+1}(\pi_q, q; \pi_r)$ attach to the space Y as topological invariants. And, it is obvious from our definition that $i_q^* \boldsymbol{k}_{n,q}^{r+1} = \boldsymbol{k}_q^{r+1}$.

In the identification of the complexes $K(\pi_n, n, \pi_q, q, k)$, the only essential part is the identification of the complex with the image of the automorphism η about which we considered above. Namely, we can recognize the invariant as the family $\{\eta(\boldsymbol{h}_q)^* \boldsymbol{k}_{n,q}^{r+1}\}$ of the classes of $H^{r+1}(\pi_n, n, \pi_q, q, k; \pi_r)$ for the fixed complex $K(\pi_n, n, \pi_q,$ q, k), where \boldsymbol{h}_q is the cohomology class going round the $H^q(\pi_n, n, \pi_q,$ $q, k; \pi_q) \cong H^q(Y; \pi_q)$. In other words, the invariant is the image $\tau(\boldsymbol{b}_n)^* \boldsymbol{k}_{n,q}^{r+1}$ of $\boldsymbol{k}_{n,q}^{r+1}$, and is an element of the factor group $H^{r+1}(\pi_n, \pi_q, \boldsymbol{k}_n^{q+1}; \pi_q)$. In the following we shall denote this element simply as $\{\boldsymbol{k}_{n,q}^{r+1}\}$.

4. Let $f: K^n \to L \to Y$ be a map extendible to a map $K^{n+1} \to L \to Y$ with $f(K^{n-1}) = y_0$ which is the base point of Y, then a characteristic cocycle $a^n(f) \in Z^n(K; \pi_n)$ is determined as usual. If the second obstruction $z^{q+1}(f) = 0$, the map f admits an extension $f': K^r \to L \to Y$ and has an obstruction $c^{r+1}(f') \in Z^{r+1}(K, L; \pi_r)$. The cohomology class $z^{r+1}(f')$ of this cocycle depends on the choice of the extension $f' \mid K^q \to L$ as follows.

It follows from $z^{q+1}(f)=0$ that there is a cochain $a^{q}(f')$ in $C^{q}(K; \pi_{q})$ satisfying $kT(a^{n}(f)) + \delta a^{q}(f')=0$.

Theorem 5. Let $f_1, f_2: K^q \sim L \rightarrow Y$ be two extensions of the map f above and which are extendible to $K^{q+1} \sim L \rightarrow Y$. Then

 $\boldsymbol{z}^{r+1}(f_1) - \boldsymbol{z}^{r+1}(f_2) = \boldsymbol{k}_{n,q}^{r+1}(\boldsymbol{a}^n(f), \boldsymbol{a}^q(f_1, f_2)) + \boldsymbol{k}_q^{r+1} \vdash \boldsymbol{a}^q(f_1, f_2),$

Theorem 6. Let $f: K^n \to Y$ be a map extendible to a map $K^{q+1} \to Y$. then the third obstruction of f is determined as follows:

$$\{z^{r+1}(f)\} = k_{n\cdot q}^{r+1} \cdot a^n(f).$$

5. We shall display a few properties of γ -and τ -operators in some special cases in the following.

a) If n+q>r, then $\boldsymbol{y}_{r}(\boldsymbol{x}_{n}, \boldsymbol{x}_{q})=0$.

No. 7]

b) If n+q=r, then $\boldsymbol{y}_{r}(\boldsymbol{x}_{n}, \boldsymbol{x}_{q})=\boldsymbol{x}_{n} \smile \boldsymbol{x}_{q}$ where the cup product is taken relative to the pairing determined by y. Especially if y is a representative class of the invariant $\{k_{n,q}^{r+1}\}$, the cup product are paired by the Whitehead product.

c) If n>2, r=q+1 then the invariant $\{k_{n,q}^{r+1}\}$ is determined as a coset of $H^{r+1}(\pi_n, \pi_q, \boldsymbol{k}_n^{q+1}; \pi_r) \mod Sq^2 H^q(\pi_n, \pi_q, \boldsymbol{k}_n^{q+1}; \pi_q)$. And the third obstruction is also determined as a coset of $H^{r+1}(K; \pi_r) \mod$ $Sq^{2}H^{q}(K; \pi_{a}).^{6}$

d) If n=2, q=3, r=4 then the third obstruction of a map $f: K^2 \to Y$ is determined as a coset of $H^5(K; \pi_4) \mod a^2(f) \subset H^3$ $(K; \pi_3) + Sq^2 H^3(K; \pi_3).^{6)}$

⁶⁾ Refer. N. Shimada and H. Uehara: On a homotopy classification of mappings of an (n+1) dimensional complex into an arcwise connected topological space which is aspherical in dimensions less than n(n>2), Nagoya Math. Jour., 3, 67-72 (1951).