95. Lacunary Fourier Series. I

By Masako Satô
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., July 12, 1955)

1. M. E. Noble [1] has proved the following

Theorem N. If the Fourier series of $f(t)$ has a gap $0<\left|n-n_{k}\right|$ $\leqq N_{k}$ such that

$$
\lim N_{k} / \log n_{k}=\infty
$$

and $f(t)$ satisfies a Lipschitz condition of order $\alpha(0<\alpha<1)$ in some interval $\left|t-t_{0}\right| \leqq \delta$, then

$$
a_{n_{k}}=O\left(1 / n_{k}^{\alpha}\right), \quad b_{n_{k}}=O\left(1 / n_{k}^{\alpha}\right),
$$

where $a_{n_{k}}, b_{n_{k}}$ are non-vanishing Fourier coefficients of $f(t)$.
In the present paper we treat the Fourier series with a certain gap and satisfying some continuity condition at a point, instead of in a small interval. Our theorems depend on the lemma (Lemma 1 in §2), which is due to M. E. Noble, except (iv) and (v).

We can also prove theorems concerning absolute convergence of Fourier series with the above-mentioned conditions, analogously to M. E. Noble [1]. These will be found in the second paper.
2. Lemma 1. Let $\left(\delta_{m}\right)$ be a sequence tending to zero and let $n=\left[4 e \mathrm{~m} / \delta_{m}\right]$. Then there exists a trigonometrical polynomial $T_{n}(x)$ of degree not exceeding n with constant term 1 such that: ${ }^{1)}$
(i)

$$
\left|T_{n}(x)\right| \leqq A / \delta_{m}, \text { for all } x
$$

(ii) $\quad\left|T_{n}(x)\right| \leqq A n / \delta_{m} e^{m},\left(\delta_{m} \leqq|x| \leqq \pi\right)$,
(iii) $\quad\left|T_{n}^{\prime}(x)\right| \leqq A n / \delta_{m}$, for all x,
(iv) $\left.\quad\left|T_{n}^{\prime}(x)\right| \leqq A\left(n^{2} / \delta_{m} e^{m}+1 / x^{2}\right),\left(\lambda \delta_{m} \leqq|x| \leqq \pi, \lambda>1\right)^{2}\right)$
(v) $\quad\left|T_{n}^{\prime \prime}(x)\right| \leqq A n^{2} / \delta_{m}$, for all x.

Proof. Let $E_{m}=\left(-\delta_{m}, \delta_{m}\right)$, and $C_{m}(x)$ be its characteristic function. We choose then $\tau_{m}=\delta_{m} / 2 m$ and construct a set of even function $h_{i}(x)(i=0,1,2, \ldots)$ defined by

$$
\begin{gathered}
h_{0}(x)=\frac{\pi}{\delta_{m}} C_{m}(x) \\
h_{i+1}(x)=\frac{1}{\tau_{m}} \int_{x}^{x+\tau_{m}} h_{i}(t) d t \quad(i=0,1,2, \ldots)
\end{gathered}
$$

for $x \geqq 0$ and $i \leqq m-1$.
It is easy to see that

$$
h_{m}(x)= \begin{cases}0 & \left(\delta_{m} \leqq|x| \leqq \pi\right) \\ \pi / \delta_{m} & \left(|x| \leqq \delta_{m} / 2\right)\end{cases}
$$

1) A denotes an absolute constant which is not the same in different occurrences.
2) λ may be taken as near 1 as we like when m is sufficiently large.
and that it is monotone in the remaining intervals [$\delta_{m} / 2, \delta_{m}$] and $\left[-\delta_{m},-\delta_{m} / 2\right]$. Moreover it follows easily from the definition that

$$
h_{m}^{(m-1)}(x)=O\left(\left(\frac{2}{\tau_{m}}\right)^{m-1} \max \left|h_{0}(x)\right|\right)=O\left(\frac{(4 m)^{m-1}}{\delta_{m}^{m}}\right)
$$

uniformly in x. If a_{p} and b_{p} are the p th Fourier coefficients of $h_{m}(x)$ we have, integrating ($m-1$) times by parts,

Consequently if $s_{n}(x)$ is the nth Fourier partial sum of $h_{m}(x)$,

$$
\left|h_{m}(x)-s_{n}(x)\right|=O\left(\frac{(4 m)^{m-1}}{\delta_{m}^{m}} \sum_{p=n+1}^{\infty} \frac{1}{p^{m-1}}\right)=O\left(\frac{(4 m)^{m-1}}{\delta_{m}^{m} n^{m-2}}\right)
$$

uniformly in $-\pi \leqq x \leqq \pi$. Taking $n=\left[4 \mathrm{em} / \delta_{m}\right]$ we obtain

$$
\left|h_{m}(x)-s_{n}(x)\right|=O\left(n / \delta_{m} e^{m}\right)
$$

which shows that the polynomial $s_{n}(x)$ satisfies (i) and (ii).
Further its constant term $a_{0} / 2$ satisfies

$$
\frac{1}{2} \leqq \frac{1}{2} a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} h_{m}(x) d x \leqq 1
$$

and consequently the condition that the constant term is 1 can be satisfied by taking $T_{n}(x)=\lambda_{n} s_{n}(x)$ where $1 \leqq \lambda_{n} \leqq 2$.
(iii) and (v) follow from (i) and (iii), respectively, by a famous inequality of Bernstein [2].

Finally we shall prove (iv). Since

$$
T_{n}^{\prime}(x)=\frac{2 n}{\pi} \int_{-\pi}^{\pi} T_{n}(t+x) \sin n t K_{n-1}(t) d t
$$

where $K_{n}(t)$ is the Fejér kernel and $K_{n}(t) \leqq n(0 \leqq t \leqq \pi), K_{n}(t) \leqq 1 / n t^{2}$ ($1 / n<t \leqq \pi$) [2], we have

$$
\begin{aligned}
\left|T_{n}^{\prime}(x)\right| & \leqq A n\left[\int_{-\pi}^{-\pi / n}+\int_{-\pi / n}^{\pi / n}+\int_{\pi / n}^{-x-\delta_{m}}+\int_{-x-\delta_{m}}^{-x+\delta_{m}}+\int_{-x+\delta_{m}}^{\pi}\right]\left|T_{n}(t+x)\right| K_{n-1}(t) d t \\
& \leqq \frac{A n}{\delta_{m} e^{m}}\left[\int_{-\pi}^{-\pi / n}+\int_{\pi / n}^{-x-\delta_{m}}+\int_{-x+\delta_{m}}^{\pi}\right] \frac{d t}{t^{2}}+\frac{A n^{3}}{\delta_{m} e^{m}} \int_{-\pi / n}^{\pi / n} d t+\frac{A}{\delta_{m}} \int_{-x-\delta_{m}}^{-x+\delta_{m}} \frac{d t}{t^{2}} \\
& \leqq \frac{A n^{2}}{\delta_{m} e^{m}}+\frac{A}{x^{2}}
\end{aligned}
$$

Thus the lemma is completely proved.
Let $\delta(t)$ be a monotone decreasing sequence such that $\delta(t) \rightarrow 0$ as $t \rightarrow \infty$ and $\delta(t)$ is differentiable. We write $\delta(m)=\delta_{m}$ and $\delta^{\prime}(m)=\delta_{m}^{\prime}$.

In the estimation of $h_{m}(x)-s_{n}(x)$, the right side becomes minimum when

$$
n=\left[4 m e^{1-m \delta_{m}^{\prime} / \delta_{m} / \delta_{m}}\right]
$$

For such n, we get

$$
\left|h_{m}(x)-s_{n}(x)\right|=O\left(n / \delta_{m} e^{\left(1-m \delta_{m}^{\prime} / \delta_{m}\right)(m-1)}\right)
$$

Similarly to Lemma 1 we get the following
Lemma 2. Let $\left(\delta_{m}\right)$ be a sequence tending to zero and let
$n=\left[4 m e^{1-m s_{m}^{\prime} / \delta_{m}} / \delta_{m}\right]$. Then there exists a trigonometrical polynomial $T_{n}(x)$ of degree not exceeding n with constant term 1, satisfying the conditions (i), (iii), (v), Lemma 1, and
(ii^{\prime}) $\quad\left|T_{n}(x)\right| \leqq A n / \delta_{m} e^{\left(1-m \delta_{m}^{\prime} / \delta_{m}\right)(m-1)}, \quad\left(\delta_{m} \leqq|x| \leqq \pi\right)$,
(iv') $\quad\left|T_{n}^{\prime}(x)\right| \leqq A\left(n^{2} / \delta_{m} e^{\left(1-m \delta_{m}^{\prime} / \delta_{m}\right)(m-1)}+1 / x^{2}\right)$,
$\left(\lambda \delta_{m} \leqq|x| \leqq \pi, \lambda>1\right)$.
3. Theorem 1. Let $0<\alpha<1$ and $0<\beta<\min (1-\alpha,(2-\alpha) / 3)$.

If

$$
\begin{equation*}
k^{9 /(\Omega-\alpha-\alpha \beta)}<n_{k}<e^{92 k /(2+\alpha+\beta)} \tag{1}
\end{equation*}
$$

$\left|n_{k \pm 1}-n_{k}\right|>4 e k n_{k}^{\beta}$
and

$$
\begin{equation*}
\frac{1}{\tau} \int_{0}^{\tau}|f(t)-f(t \pm h)| d t=O(1), \text { unif. in } \tau \geqq h^{\beta}, \tag{3}
\end{equation*}
$$

then
(5)

$$
a_{n_{k}}=O\left(n_{k}^{-\alpha}\right), \quad b_{n_{k}}=O\left(n_{l_{k}}^{-\alpha}\right),
$$

where $\alpha_{n_{k}}, b_{n_{k}}$ are non-vanishing Fourier coefficients of $f(t)$.
Proof. Let $\delta_{k}=1 / n_{k}^{\beta}$ and choose a sequence $M_{k}=\left[4 e k / \delta_{k}\right]$. Let $T_{M_{k}}(x)$ be the trigonometrical polynomial determined by Lemma 1. Then we write, by (2),

$$
\begin{aligned}
a_{n_{k}} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) T_{M_{k}}(t) \cos n_{k} t d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[f(t)-f\left(t+\pi / n_{k}\right)\right] T_{M_{k}}(t) \cos n_{k} t d t \\
& +\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(t+\pi / n_{k}\right)\left[T_{M_{k}}(t)-T_{M_{k}}\left(t+\pi / n_{k}\right)\right] \cos n_{k} t d t \\
& =I_{1}+I_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
I_{1} & =\frac{1}{2 \pi}\left[\int_{|t| \leq \delta_{k}}+\int_{|t|>\delta_{k}}\right]\left[f(t)-f\left(t+\pi / n_{k}\right)\right] T_{M_{k}}(t) \cos n_{k} t d t \\
& =I_{11}+I_{12} .
\end{aligned}
$$

We have then

$$
\left|I_{11}\right| \leqq \frac{A}{\delta_{k}} \int_{-\delta_{k}}^{\varepsilon_{k}}\left|f(t)-f\left(t+\pi / n_{k}\right)\right| d t \leqq \frac{A}{n_{k}^{\alpha}}
$$

by the condition (3) and Lemma 1, (i), and

$$
\left|I_{12}\right| \leqq A M_{k} / \delta_{k} e^{k} \leqq A / n_{k}^{a}
$$

by (1) and Lemma 1, (ii). Further we write

$$
\begin{aligned}
I_{2} & =A \int_{-\pi}^{\pi} f\left(t+\pi / n_{k}\right)\left[T_{M_{k}}(t)-T_{M_{k}}\left(t+\pi / n_{k}\right)\right] \cos n_{k} t d t \\
& =\frac{A}{2} \int_{-\pi}^{\pi}\left[f\left(t+\pi / n_{k}\right)-f(t)\right]\left[T_{M_{k}}(t)-T_{M_{k}}\left(t+\pi / n_{k}\right)\right] \cos n_{k} t d t
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{A}{2} \int_{-\pi}^{\pi} f(t)\left[T_{M_{k}}\left(t-\pi / n_{k}\right)-2 T_{m_{k}}(t)+T_{M_{k}}\left(t+\pi / n_{k}\right)\right] \cos n_{k} t d t \\
& =I_{21}+I_{22}
\end{aligned}
$$

Dividing the integral I_{21} into three parts, we get for a $\theta(0<\theta<1)$

$$
\begin{aligned}
\left|I_{21}\right| & \leqq \frac{A}{n_{k}} \int_{-\pi}^{\pi}\left|f(t)-f\left(t+\pi / n_{k}\right)\right|\left|T_{M_{k}}^{\prime}\left(t+\theta \pi / n_{k}\right)\right| d t \\
& =\frac{A}{n_{k}}\left[\int_{-\pi}^{-\lambda \delta_{k}}+\int_{-\lambda \delta_{k}}^{\lambda \delta_{k}}+\int_{\lambda \delta_{k}}^{\pi}\right]\left|f(t)-f\left(t+\pi / n_{k}\right)\right| \\
& =I_{211}+I_{212}+I_{213},
\end{aligned}
$$

where $\lambda>1$ and

$$
\left|I_{212}\right| \leqq A \frac{M_{k}}{n_{k}} \frac{1}{\delta_{k}} \int_{-\lambda \delta_{k}}^{\lambda \delta_{k}}\left|f(t)-f\left(t+\pi / n_{k}\right)\right| d t \leqq \frac{A M_{k}}{n_{k}^{1+\alpha}} \leqq \frac{A}{n_{k}^{\alpha}}
$$

by (3) and Lemma 1, (iii), and putting $F(t)=\int_{0}^{t}\left|f(u)-f\left(u+\pi / n_{k}\right)\right|$ du

$$
\left.\begin{array}{rl}
& \left|I_{213}\right|
\end{array} \leqq \frac{A M_{k}^{2}}{n_{k} \delta_{k} e^{k}}+\frac{A}{n_{k}} \int_{\lambda \delta_{k}}^{\pi} \frac{\left|f(t)-f\left(t+\pi / n_{k}\right)\right|}{t^{2}} d t\right] \text { } \begin{aligned}
& \frac{A M_{k}^{2}}{n_{k} \delta_{k} e^{k}}+\frac{A}{n_{k} \delta_{k}^{2}} \int_{0}^{\lambda \delta_{k}}\left|f(t)-f\left(t+\pi / n_{k}\right)\right| d t+O\left(\frac{1}{n_{k}}\right)+\frac{A}{n_{k}} \int_{\lambda \delta_{k}}^{\pi} \frac{F(t)}{t^{3}} d t \\
& <\frac{A M_{k}}{\delta_{k} e^{k}}+\frac{A}{n_{k} \delta_{k}} \leqq \frac{A}{n_{k}^{\alpha}}
\end{aligned}
$$

by (1), (3), (4), and Lemma 1, (iv). I_{211} may also be estimated similarly to I_{213}. Thus we have

$$
\left|I_{21}\right| \leqq A / n_{k}^{\alpha}
$$

Further we get

$$
\left|I_{22}\right| \leqq A M_{k}^{P} / n_{k}^{2} \delta_{k} \leqq A / n_{k}^{\alpha}
$$

by Lemma 1 , (v).
Collecting above estimations we get the conclusion.
Theorem 2. Let $0<\alpha<1,0<\beta<(2-\alpha) / 3$, and

$$
\gamma>2 / \min (1-\beta, 2-\alpha-3 \beta)
$$

(or especially $0<\beta<(1-\alpha) / 2$ and $\gamma>2 /(1-\beta)$). If the Fourier coefficients of $f(t)$ vanish except for $n=\left[k^{r}\right](k=1,2,3, \ldots)$ and the conditions (3) and (4) of Theorem 1 are satisfied, then (5) holds true.

Proof runs similarly to that of Theorem 1, making use of Lemma 2 instead of Lemma 1. In this case

$$
n_{k}=\left[k^{\tau}\right], \quad \delta_{k}=1 / k^{\tau \beta}, \quad M_{k}=4(e k)^{1+\gamma \beta} .
$$

References

[1] M. E. Noble: Coefficient properties of Fourier series with a gap condition, Math. Ann., 128, 55-62 (1954).
[2] A. Zygmund: Trigonometrical series, Warszawa (1935).

