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1. M.E. Noble 1] has proved the following
Theorem N. If the Fourier series of f(t) has a gap 0<ln--nl
N such that

lim N/logn-
and f(t) satisfies a Lipschitz condition of order (0<a<l) in some
interval It- tol, then

a,-O(1/n), b=O(1/n),
where a, b% are non-vanishing Fourier cocients of f(t).

In the presen paper we treat the Fourier series with a certain
gap and satisfying some continuity condition at a point, instead of
in a small interval. Our theorems depend on the lemma (Lemma 1
in fi2), which is due o M. E. Noble, except (iv) and (v).

We can also prove theorems concerning absolute convergence of
Fourier series with the above-mentioned conditions, analogously to
M. E. Noble [1. These will be found in he second paper.

2. Lemma 1. Let () be a sequence tending to zero and let
n- [4em/$. Then there exists a trigonometrical polynomial T(x) of
degree not exceeding n with constant term 1 such that "

(i) IT,(x) IA/, for all x,
(ii) IT.(x) lAn/$e, (Ix1),
(iii) IT(x)IAn/, for all x,
(iv) IT(x)lA(n/e+ l/x), (ai x 1, 1))
(v) IT’(x)lAn/, for all x.

Proof. Let E=(-$, $), and C(x) be its craeteristie func-
tion. We choose then r=$/2m and construct a set of even rune-
%ion h(x) (i=0,1, 2,...) defined by

C (x)

h,(t) at (i o, 2, ),

for xO and im-1.
It is easy to see hat

(1 x
1) A denotes an absolute constant which is not the same in different occurrences.
2) 2 may be taken as near 1 as we like when m is sufficiently large.
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and that it is monotone in the remaining intervals [/2, ] and
[- $, $/2. Moreover it follows easily from the definition that

uniformly in x. If a and b are the pth Fourier coefficients of
h(x) we have, integrating (m-l) times by parts,

Consequengly if s(x) is he nth Fourier partial sum of h(x),

lh.(x)-s.(x)l-O((4m)’-*
uniformly in -x. Taking n=4em/$ we obtain

s.(z) O(n/  e
which shows that the polomial s,,(x) satisfies (i) and (ii).

Further its constant term ao/2 satisfies
1 fh.,(x) dx=<1

and consequently the condition that the constant term is 1 can be
satisfied by taking T.(x)=&s.(x) where

(iii) and (v) follow from (i) and (iii), respectively, by a famous
inequality o Bernstein 2.

Finally we shall prove (iv). Since

T,(x)-- 2n fiTn(t + x) sin nt K._(t) dr,

where K.(t) is the Fejdr kernel and K(t)n (Otv), K.(t)l/nt
(1/n<t) [2, we have

An A

Thus the lemma is completely proved.
Let (t) be a monotone decreasing sequence such hat $(t)O as
t and (t) is differentiable. We write $(m)= and ’(m)=.

In the estimation of h(x)-s(x), the right side becomes minimum
when

n- 4me-/6/.
For such n, we get

h(x)- s,(x)] =O(n/e-/-).
Similarly to Lemma 1 we get the following

Lemma 2. Let () be a sequence tending to zero and let
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n=[4me-/H]. Then there exists a trigonometrical polynomial
T,(x) of degree not exceeding n with constant term 1, satisfying the
conditions (i), (iii), (v), Lemma 1, and

(ii’) IT(x) l<A.n/,d-’/x-, (,l x ),
(iv’) T(x) A(n/e(-/-" + 1/x),. Theorem 1. Let 0< a< 1 and 0<<min (1- a, (2- a)/3).

If
(1)
(2)
and

()

]gSl(S-a-) nk e

n,-n 4ekn

I fh If(t)-f(t+_-h)ldt= O(h),

1 flf(t)-f(t+h)Idt=O(1) unif. in ->h,
then
( 5 a--O(n;), b, O(n;),
where a, b are non-vanishing Fourier coefficients of f(t).

Proof. Let =1/n and choose a sequence M-- 4ek/. Let
T(x) be the rigonomerieal polynomial determined by Lemma 1.
Then we write, by (2),

a=-ff(t)T(t) cos ’nt dt

lf [f(t)-f(t+r/n) T(t) cos n dt
2r

1+r-f f(t + r/n)[T,(t)-T,(t + r/n)cos nt dt

--I + I
and

1 +f ] -z +r/}lT, ntdt

We ve then

1I, I lf(t)-f(t+ /’n)ldt A

by the condition (3) and Lemma 1, (i), and

by (1) and Lemma 1, (ii). Further we write

I:=AJS(t+/n)[T.. (t)- T..(t +./n)] cosn dt

?(,+ ln)-f(t)] [TCt)- T.{t+ /n)] cos nt d
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1+I.
Dividin the in,egral I into three arts, we get for

I 1-4--flf(t)-f(t+ lnDliT(t+ Oln)ldt

Jlf(t)-f(t+ /n )l

Ili + I=,= +
where a > 1 and

fx*if(t) <AM A

by (8) nd Lemma 1, (iii), and utin N()= If()-f(+ /)l du

A x, ( +Ae_- A +__ lf(t)-f(t+ /n)Idt+ 0 1 {)dt

<AM + A
8# n8- n

by (1),. (3), (4), and Lemma 1, (iv).
similarly to I,. Thus we have

I= A/n.
Further we get

I may also be estimated

by Lemma 1, (v).
Collecting above estimations we get the conclusion.
Theorem 2. Let 0<<1, 0<B<(2- )/3, and

7>2/min (l-B, 2--3B)
(or especially 0<B< (1- )/2 and 7 >2/(1-B)). If the Fourier co-

e.ciens of f(t) vanish except for n= [M] (k-- 1, 2, 8,...) and the
conditions (8) and () of Theorem 1 are satisfied, then (5) holds true.

Proof runs similarly to that of Theorem 1, making use of Lemma
2 instead of Lemma 1. In this case

n= _krTJ, 8= 1/kr, M=4(ek)’+r.
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