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160. On the Cell Structures o SU(n) and Sp(n)

By Ichiro YOKOTA
Osaka City University, Osaka

(Comm. by K. KUNUGI, M.J./k., Dec. 12, 1955)

The Betti numbers of the classical groups (the special orthogo-
nal group SO(n), the special unitary group SU(n), and the symplectic
group Sp(n)) were determined by the various methods. Recently,
by making use of the spectral sequences for the fibre spaces
SO(n)/SO(n- 1)=S"-, SU(n)/SU(n- 1)=S’-, and Spn)/Sp(n- 1)
=S’-, A. BoreF) has computed the integral homology groups of
these groups. As o SO(n), J, H. C. Whitehead) has determined
is cell structure as a cell complex. Those cells were closely con-
nected with real projective space P. C. E. Miller’) has computed
the homological and the cohomological structures by making use of
the above cell structure.

In this paper we shall determine the cell structures of SU(n)
and Sp(n)as cell complexes. Those cells are closely connected with
the firs suspended space E(M) of the complex projective space M
and the %hird suspended space E(Q) o: the quaternion projective
space Q respectively. The above considerations also give the cellular
decompositions of the complex Stiefel manifold W,,=SU(n)/SU(n-m)
and he quaternion Stiefel manifold X,,,=Sp(n)/Sp(n-m).

Using this cell strucure, the homology groups and the cohomology
groups are computed very easily. If we wan o calculate the cup
product, he Ponrjagin product, and the Steenrod’s,square operations
etc., we shall be able o attain the aim with some more preparations.
The ull details will appear in the Journal of the Institute of Poly-
technics, Osaka City University.

1. Le C" be a vector space of dimension n over the field
complex numbers, and e be the elemen of C" whose i-h coordinate
is 1 and whose other coordinates are 0. We embed C
as a subspace whose first coordinate is 0. Let S- be the unit
sphere of C, %hen he embedding, C’C/ gives rise to an embed-
ding S- S+.
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Let SU(n) be the group of all special unitary linear transforma-
tions of C. In matrix notation, (n,n) matrix A with complex
coefficients is special unitary if and only if AA*-.E and det A-1.
SU(n) may be regarded as a subgroup of SU(n+ 1) by extending a
matrix A of SU(n) to SU(n+ 1) by requirement that Ae=e.

Set p(A)=Ae for A SU(n). Then by the map p, SU(n) operates
on S- transitively and its isotoropy group is SU(n-1). Hence
we have SU(n)/SU(n-1)=S-.

2. Let M. be the 2n-dimensional projective space. If a point
x of M has a representative x-= [x, x:,..., x+, then the other
representatives are x=_ax, ax,...,ax/ where a is any non zero
complex number. In the following, we shall choose a representative
such that x[/lx.le/.../lx.+x[--1. We can regard M as a
subspace of M+ whose first coordinate is O.

Let E(M) be the suspended space of M.. This definition is

the following. Let/be the closed interval I ’1 and (-)2 2

( r 1 be two different points which are not in Mn. Then, E(Mn) is

e fo me  rom-o, "

(’) and (’) Thus a poin of E(M)has therespectively o - -- ..
coordinates @, 0), where s M,, 0 s I. Especially he coordinates of

and -- are respectively ,-- and ,_,r wherexis

an arbitrary point of M,.
8. Define map f: E(M,_)SU() by f(x, O)= U= VW, where

=[, x,...,x
_

such :hat x + + + a% != 1, 0 I,

V=exp 0 (V"- 1 0)E- cos 0 .x. x

and W= exp (- V’- 1 )
exp (- V’- 1.0)

-exp (1/11 0)
U does not depend on the choise of representatives of x, and if

= +/--., U also does not depend on . Therefore, f is well defined.

It will be easily verified that U is special unitary. We shall call

5) A* is the transposed and conjugate matrix of A. E is the unit matrix.
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f the characteristic map of E(M_) into SU(n).
4. Define a map $:E(M,_)-+S- by $--pf, then $ maps

E(M_) to a point e of S- and -=E(M_)-E(M_) homeo-
morphically onto S’--e.

In fact, it is obvious that $ maps E(M,_) to e. Given any

point (q //V’-- 1, a, a,..., a.) of S’-- e, where e 4= 1, B are real
numbers and a, as,...,a, are complex numbers, it is sufficient to
show the following equations can be solved continuously:

1 2 exp (- /22- ) cos x, t- a+ Bp/- 1

-2 exp (-V’-:2- ) cos x:a

2 exp (--’- ) cos x=a.
From he first equation, we have

x,_(1-)+-=- exp (-- 1 ), sin:
(1--)+ B’

where m is an arbitrary real number. Thus x, and 0 are determined.
From the other equations, x,...,x can be deermined. Thus
x:[x,x:,...,x] has determined uniquely as a point of the projec-
tive space M_,.

5. In the preceding secsmn, we saw that f mapped- homeo-
morphically into SU(k)SU(n) for nk2. Set e--f(-)
and we shall call it 2k-1 dimeional primitive cell of SU(n). us
we have 3, 5, 7, ,2n-1 dimeional n-1 primitive cells of SU(n).

For nk,>k:... >k2, extend f o a map f" E(M_,)
x E(M_,) SU(n) by ]((x, ,) x (y, ) x

f(y, e)...f(z, ). Put e-’,-’ -’:](-’
First of all, we shall show that SU(n) is the union of cells

e:E,e- and e-’,- -’, where n>k>k>... >k2._ Since
SU(1):E, we shall assume tha he above assertion is true for
SU(m) where m<n. If A SU(n) but ASU(n-1), then we can
choose a poin (x, 0) e- uniquely such that (x, O):p(A). Put
U:f(x,O), Shen U*A e SU(n-1). Hence U*A belongs o a certain
cell e,-’’-’ -, where n-lk,>k>...>k2, of SU(n-1)
by the inudction. Therefore, A belongs o a cell e-,- -’.

Next,. we shall show that f maps ,-’x-x
homeomorphically onto e,-’.-’,.’".-’ and these cells are disjoin
o each other. In act, if UU. U: V,V. , where U e e,-
and if m<m’ then k>k, and V is the similar one, p(U,U...U)
:p(V,V. ). Since p(U,U:. .U,):p(U,), p(U,):p(V,). Since
is homeomorphic, it follows U,= V,. Hence, UU... U,= V:V... V.
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Similarly U=V and so on. Consequently s=t. The fact hat f
is a homeomorphism is obvious from that of $.

Thus we have the following
Theorem. The special unitary group SU(n) is a cell complex

composed of 2- cells e, e-’-’’’’’-, where nk>k.... >k2.
The dimension of e%-’-’’’’’- is (2k- 1) + (2k.- 1) +..- + (2k- 1).
Especially e- called 2k-1 dimensional primitive cell of SU(n) is
obtained as the image of the interior of the suspended space EM_)
of 2k-2 dimensional complex projective space M_ by the character-
istic map f" E(M_) -> SU(k) SU(n).

With respect to the above cell structure of SU(n), the boundary
homomorphisms are trivial in all dimensions. Hence we can compute
the homology groups and the cohomology groups very easily. In
fact, the torsion groups are zero in all dimensions, and the
number for m dimension is the number of the cells whose dimen-
sions are m. Therefore, the Poincar polynomial of SU(n) is

Ps((t) (1 + t)(1 + t)... (1 +
6. Instead of the field of complex numbers, if we take the

field of quaternion numbers, he considerations of 1-5 are also
ext.ensible to he case of the symplectic group Sp(n).

Let 9 be a vector space of dimension n over the field of
quaternion numbers, and embed 9" in 9"/ as a subspace whose
first coordinate in 0. Let S- be the unit sphere in t9", then
9 t9 + gives rise to S- S /.

Let Sp(n) be the group of all symplectic linear transformations
of 9. Namely, in matrix notation, (n, n) matrix A with quaternion
coefficients is symplectic if and only if AA*=E. Sp(n) may be
regarded as a subgroup of Sp(n + 1) by extending an element A of
Sp(n) to Sp(n+ 1) by the requirement that Ae=e. Set p(A)=Ae
for A SU(n). Then by the map p, Sp(n) operates on S- transi-
tively and its isotoropy group is Sp(n-1). Hence we have Sp(n)]
Sp(n-1) S-7. Let Q, be the 4n dimensional quaternion projective space.
If a point x of Q has a representative x=[x,x,...,x/], then
the other representatives are x= lax, axe,..., ax,+, where a is any
non zero quaternion number. We can regard Q. as a subspace of
Q./ whose firs coordinate is 0.

Let E(Q,) be the third suspended space Q,. Its definition is
the following. Let E be the closed cell consisting of all pure
imaginary quaternion numbers whose norm 1, S be its boundary
and S, be a 2-dimensional sphere which is not in Q. Choose a
homeomorphism v of S to S, and put (q)=q,. Then E(Q,) is
he space formed from Q E by contracting Q q to q, for each
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q S. Thus a point E(Q) has the coordinates (x, q), where x Q,
q E. Especially a point of S. has coordinates (x, q), where x is
an arbitrary point of Q and q e S.

8. Define a map f" E(Q_)-->Sp(n) by f(x, q)-U, where x--
[x,x:,...,x Q. such that ]x ]+Ix] +... +]xi-l, q E,

x
U=E_2_iql(_q+-i) x x

x x x
U does not depend on he choise of representatives of x, and if
q S,, U also does not depend on x. Therefore, f is well defined.
It will be easily veriA t U is symplectic.

9. Define a map $" E(Q_) S- by $=pf, then $ maps
=EQ_)-E(Q_:) homeomorphically onto S--e and contracts
Ea(Q_) to a point e.

10. Set e-=f(-) and we shall call it 4k-1 dimensional
primitive cell of Sp(n). us we have 3, 7, 11,..., 4n-1 dimensional
n primitive cells of Sp(n).

For n_k>k:...>kl, extend f o a map f:E(Q_
E(Q_) E(Q_)Sp(n) by f((x, ) (y, ) .(z, ))=.f(x,
O)f(g, )... f(z, ). Pu e,-,- --f(- -’x
’-). Then we have the following theorem as similar as SU(n).

Theorem. The symplectic group Sp(n) is a cell complex composed
e-’- - where nk>k:... >kl. Theof 2 cells e,

dimension of e,-,- - is (4k-l)+(4k-l)+... +(4k-l).
Especially e- called 4k-1 dimensional imitive cell of Sp(n) is
obtained as the image of the interior of the third suspended space
E(Q_) of 4k-4 dimensional quaternion ojective space Q_ by the
characteristic map f" E(Q_) Sp(k) Sp(n).

With respect to this cell structure of Sp(n), the boundary homo-
morphisms are trivial in all dimensions. So that the torsion groups
are zero in all dimensions, and the Poincar polynomial of Sp(n) is

+ + +


