159. Cohomology of the Three-fold Symmetric Products of Spheres

By Minoru NAKAOKA Osaka City University, Osaka (Comm. by K. KUNUGI, M.J.A., Dec. 12, 1955)

§1. Introduction. Let K be a space, and denote by $K^n = K \times K \times \cdots \times K$ the *n*-fold Cartesian product of K. Then we may regard the symmetric group \mathfrak{S}_n of degree *n* as a transformation group acting on K^n in a natural fashion as follows: For any $\gamma \in \mathfrak{S}_n$ and $(x_1, x_2, \ldots, x_n) \in K^n$, we set $\gamma(x_1, x_2, \ldots, x_n) = (x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(n)})$. The orbit space over K^n relative to \mathfrak{S}_n will be called *the n-fold symmetric product* of K.

In the present paper, we shall determine the cohomology of the 3-fold symmetric product $S^n * S^n * S^n$ of an *n*-sphere $S^n (n \ge 1)$, by making use of the results and arguments in the previous paper.¹⁾ Full details will appear in the Journal of the Institute of Polytechnics, Osaka City University.

§2. Methods for calculations. Let

 $T, S: S^n \times S^n \times S^n \to S^n \times S^n \times S^n$

be transformations given by

 $T(x_1, x_2, x_3) = (x_2, x_3, x_1),$

 $S(x_1, x_2, x_3) = (x_2, x_1, x_3), \quad (x_1, x_2, x_3 \in S^n)$

respectively. Then the orbit space over $S^n \times S^n \times S^n$ relative to T is the 3-fold cyclic product ϑ_{n3} of $S^{n,2}$ whose cohomology has determined in CP. Since $TS = ST^2$, $T^2S = ST$, the transformation $S:S^n \times S^n \times S^n \times S^n \times S^n \times S^n$ induces a transformation $\overline{S}: \vartheta_{n3} \to \vartheta_{n3}$ such that $\pi S = \overline{S}\pi$, where $\pi: S^n \times S^n \times S^n \to \vartheta_{n3}$ is the natural projection. Then \overline{S} is the transformation of period 2, and the orbit space over ϑ_{n3} relative to \overline{S} is the symmetric product $S^n * S^n \times S^n$. Note that the set of fixed points under \overline{S} is homeomorphic with $S^n \times S^n$. We shall now apply the theory in §1 of CP to the complex ϑ_{n3} with the transformation \overline{S} . Then we obtain the results stated in the following.

§3. The mod 2 cohomology. The cohomology groups $H^r(S^n * S^n; Z_2)$ with coefficients in Z_2 are as follows:³⁾

¹⁾ Nakaoka, M.,: Cohomology of the *p*-fold cyclic products, Proc. Japan Acad., **31** (1955). We refer to this paper as CP.

²⁾ This is the notation used in Liao, S. D.,: On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954).

³⁾ We shall write Z and Z_p respectively for the group of integers and the group of integers mod p.

No. 10] Cohomology of the Three-fold Symmetric Products of Spheres

(3.1) $H^{r}(S^{n} * S^{n} * S^{n}; Z_{2}) \approx Z_{2}$ for $r=0, n, n+2 \leq r \leq 2n$ and $2n+2 \leq r \leq 3n; = 0$ for other r.

Let $b_{n+i}^{\#}$ $(i=0, 2 \leq i \leq n, n+2 \leq i \leq 2n)$ be the generator of H^{n+i} $(S^n * S^n * S^n; Z_2)$, and let Sq^i and \smile denote the Steenrod square and the cup product respectively. Then we have

(3.2) i) $Sq^{i}(b_{n}^{*}) = b_{n+i}^{*}$ for $2 \leq i \leq n$. ii) If k=1, 2, and $1 \leq j \leq n-1$, then $Sq^{i}(b_{kn+j+1}^{*}) = {}_{j}C_{i} \ b_{kn+i+j+1}^{*}$ if $i+j \leq n-1$, =0 if i+j > n-1,

where $_{i}C_{i}$ denotes the binomial coefficient with the usual conventions. (3.3) i) $b_{n}^{\#} \stackrel{\smile}{\longrightarrow} b_{n+i}^{\#} = b_{2n+i}^{\#}$ for $2 \leq i \leq n$.

i) $b_{n+i}^{\#} \longrightarrow b_{n+j}^{\#} = 0$ for $2 \leq i, j \leq n$.

It is to be noticed that:

(3.4) Let $\pi_0: S^n \times (S^n * S^n) \to S^n * S^n * S^n$ be the natural projection, then the homomorphism $\pi_0^*: H^r(S^n * S^n * S^n; Z_2) \to H^r(S^n \times (S^n * S^n); Z_2)$ induced by π_0 is isomorphic into for any r.

§4. The mod 3 cohomology. Using the notations in CP, we can take as a base for $H^*(\vartheta_{n_3}; Z_3)$ the following:

1[#], $g_n^{\#}(1)$, $g_{2n}^{\#}(1, 2)$, and $a_{n+s}^{\#}$ ($2 \leq s \leq 2n$).

Let $\overline{S}: C^r(\vartheta_{ns}; Z_s) \to C^r(\vartheta_{ns}; Z_s)$ be the cochain map induced by \overline{S} , and $\overline{\pi}: C^r(S^n * S^n * S^n; Z_s) \to C^r(\vartheta_{ns}; Z_s)$ the cochain map induced by the natural projection. Then we can define a cochain map $\phi: C^r(\vartheta_{ns}; Z_s)$ $\to C^r(S^n * S^n * S^n; Z_s)$ by $\overline{\pi}\phi = 1 + \overline{S}$. Let $\phi^*: H^r(\vartheta_{ns}; Z_s) \to H^r(S^n * S^n * S^n; Z_s)$ be the homorphism induced by ϕ . Write $\overline{g}_n^{\#} = \phi^* g_n^{\#}(1)$, $\overline{g}_{2n}^{\#} = \phi^* g_{2n}^{\#}(1, 2), \ \overline{a}_{n+s}^{\#} = \phi^* a_{n+s}^{\#}$. Then we have

(4.1) As a base for the vector space $H^*(S^n * S^n * S^n; Z_3)$, we can take the following:

1[#], $\overline{g}_{n}^{#}$, $\overline{g}_{2n}^{#}$ (n: even), $\overline{a}_{n+4\alpha+1}^{#}$ ($1 \leq \alpha \leq \lfloor (2n-1)/4 \rfloor$), and $\overline{a}_{n+4\alpha}^{#}$ ($1 \leq \alpha \leq \lfloor n/2 \rfloor$),⁴ where $\lfloor k \rfloor$ denotes the greatest integer $\leq k$.

Denote by $\Delta_3: H^r(S^n * S^n * S^n; Z_3) \to H^{r+1}(S^n * S^n * S^n; Z_3)$, and $\mathcal{C}^i: H^r(S^n * S^n * S^n; Z_3) \to H^{r+4i}(S^n * S^n * S^n; Z_3)$ the Bockstein homomorphism and the reduced power respectively. Then we have

$$\begin{array}{rcl} (4.2) & \mathrm{i} & \mathcal{G}^{i}\overline{g}_{n}^{*}=(-1)^{i+1}\overline{a}_{n+4i}^{*} & (i \neq 0), \\ & \mathrm{ii} & \mathcal{G}^{i}\overline{g}_{2n}^{*}=0 & (i \neq 0), \\ & \mathrm{iii} & \mathcal{G}^{i}\overline{a}_{n+4a+1}^{*}=_{2a}C_{i}\overline{a}_{n+4(a+i)+1}^{*}, \\ & \mathrm{iv} & \mathcal{G}^{i}\overline{a}_{n+4a}^{*}=_{2a-1}C_{i}\overline{a}_{n+4(a+i)}^{*}. \\ (4.3) & \mathrm{i} & \varDelta_{3}\overline{g}_{n}^{*}=0, \quad \mathrm{ii} & \varDelta_{3}\overline{g}_{2n}^{*}=0, \quad \mathrm{iiii} & \varDelta_{3}\overline{a}_{n+4a+1}^{*}=0, \\ & \mathrm{iv} & \varDelta_{3}\overline{a}_{n+4a}^{*}=\overline{a}_{n+4a+1}^{*}. \\ (4.4) & \mathrm{i} & \overline{g}_{n}^{*} \smile \overline{g}_{n}^{*}=(-1)^{n/2+1}\overline{a}_{3n}^{*} & (n: \ even), \\ & =0 & (n: \ odd). \\ & \mathrm{ii} & \overline{a}_{n}^{*} \smile \overline{a}_{n+4a+2}^{*}=0 & (\varepsilon=0,1). \end{array}$$

4) The lower suffix denotes the dimension.

M. NAKAOKA

 $\overline{a}_{n+4\alpha+\epsilon}^{\texttt{\#}} \stackrel{\smile}{\longrightarrow} \overline{a}_{n+4\beta+\epsilon'}^{\texttt{\#}} = 0 \qquad (\epsilon, \epsilon'=0, 1).$

§5. Integral homology groups. Let A be an abelian group. Then we denote by C(A, p) the p-primary component of A, and $C(A, \infty)$ the free component of A. For the integral homology group $H_r(S^n * S^n * S^n; Z)$, we have the following results:

(5.1) i) $C(H_r(S^n * S^n * S^n; Z), \infty) \approx Z$ for r=0, n, 2n with even n, 3n with even n; = 0 for other r.

ii) $C(H_r(S^n * S^n * S^n; Z), 2) \approx Z_2$ for r = jn + 2k with $1 \leq k \leq [(n - 1)/2]$ and j = 1, 2; = 0 for other r.

iii) $C(H_r(S^n * S^n * S^n; Z), 3) \approx Z_3 \text{ for } r = n + 4k \text{ with } 1 \leq k \leq [(2n - 1)/4]; = 0 \text{ for other } r.$

iv) $C(H_r(S^n * S^n * S^n; Z), q) = 0$ for odd prime $q \neq 3$ and any r.

Finally we can verify

(5.2) The 3-fold symmetric product of an n-sphere and the Eilenberg-MacLane complex K(Z, n) are of the same (n+4)-homotopy type.