159. Cohomology of the Three-fold Symmetric Products of Spheres

By Minoru NakaOKa
Osaka City University, Osaka
(Comm. by K. Kunugi, m.J.A., Dec. 12, 1955)

§1. Introduction. Let K be a space, and denote by $K^{n}=K$ $\times K \times \cdots \times K$ the n-fold Cartesian product of K. Then we may regard the symmetric group \mathfrak{S}_{n} of degree n as a transformation group acting on K^{n} in a natural fashion as follows: For any $\gamma \in \mathbb{S}_{n}$ and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K^{n}$, we set $\gamma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{r(1)}, x_{r(2)}, \ldots, x_{r(n)}\right)$. The orbit space over K^{n} relative to \mathfrak{S}_{n} will be called the n-fold symmetric product of K.

In the present paper, we shall determine the cohomology of the 3 -fold symmetric product $S^{n} * S^{n} * S^{n}$ of an n-sphere $S^{n}(n \geqq 1)$, by making use of the results and arguments in the previous paper. ${ }^{1)}$ Full details will appear in the Journal of the Institute of Polytechnics, Osaka City University.
§2. Methods for calculations. Let
$T, S: S^{n} \times S^{n} \times S^{n} \rightarrow S^{n} \times S^{n} \times S^{n}$
be transformations given by

$$
\begin{aligned}
& T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{3}, x_{1}\right), \\
& S\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right), \quad\left(x_{1}, x_{2}, x_{3} \in S^{n}\right)
\end{aligned}
$$

respectively. Then the orbit space over $S^{n} \times S^{n} \times S^{n}$ relative to T is the 3 -fold cyclic product $\vartheta_{n 3}$ of $S^{n},{ }^{2)}$ whose cohomology has determined in CP. Since $T S=S T^{2}, T^{2} S=S T$, the transformation $S: S^{n}$ $\times S^{n} \times S^{n} \rightarrow S^{n} \times S^{n} \times S^{n}$ induces a transformation $\bar{S}: \vartheta_{n 3} \rightarrow \vartheta_{n 3}$ such that $\pi S=\bar{S} \pi$, where $\pi: S^{n} \times S^{n} \times S^{n} \rightarrow \vartheta_{n 3}$ is the natural projection. Then \bar{S} is the transformation of period 2, and the orbit space over $\vartheta_{n 3}$ relative to \bar{S} is the symmetric product $S^{n} * S^{n} * S^{n}$. Note that the set of fixed points under \bar{S} is homeomorphic with $S^{n} \times S^{n}$. We shall now apply the theory in $\S 1$ of CP to the complex $\vartheta_{n 3}$ with the transformation \bar{S}. Then we obtain the results stated in the following.
§3. The mod 2 cohomology. The cohomology groups $H^{r}\left(S^{n} *\right.$ $S^{n} * S^{n} ; Z_{2}$) with coefficients in Z_{2} are as follows: ${ }^{37}$

1) Nakaoka, M.,: Cohomology of the p-fold cyclic products, Proc. Japan Acad., 31 (1955). We refer to this paper as CP.
2) This is the notation used in Liao, S. D.,: On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954).
3) We shall write Z and Z_{p} respectively for the group of integers and the group of integers $\bmod p$.

$$
\begin{align*}
& H^{r}\left(S^{n} * S^{n} * S^{n} ; Z_{2}\right) \approx Z_{2} \text { for } r=0, n, n+2 \leqq r \leqq 2 n \text { and } 2 n+2 \tag{3.1}\\
& \leqq r \leqq 3 n ; \quad=0 \quad \text { for other } r \text {. } \\
& \text { Let } b_{n+i}^{\#}(i=0,2 \leqq i \leqq n, n+2 \leqq i \leqq 2 n) \text { be the generator of } H^{n+i} \\
& \left(S^{n} * S^{n} * S^{n} ; Z_{2}\right) \text {, and let } S q^{i} \text { and }{ }^{\checkmark} \text { denote the Steenrod square and } \\
& \text { the cup product respectively. Then we have } \\
& \text { i) } S q^{i}\left(b_{n}^{\#}\right)=b_{n+i}^{\# \#} \quad \text { for } 2 \leqq i \leqq n \text {. } \tag{3.2}\\
& \text { ii) If } k=1,2 \text {, and } 1 \leqq j \leqq n-1 \text {, then } \\
& S q^{i}\left(b_{i n+j+1}^{ \pm}\right)={ }_{j} C_{i} b_{i n+i+j+1}^{\#} \quad \text { if } i+j \leqq n-1, \\
& =0 \quad \text { if } i+j>n-1,
\end{align*}
$$

where ${ }_{j} C_{i}$ denotes the binomial coefficient with the usual conventions.
i) $\quad b_{n}^{\#} \smile b_{n+i}^{\#}=b_{2 n+i}^{\#+} \quad$ for $2 \leqq i \leqq n$.
ii) $b_{n+i}^{\#} \smile b_{n+j}^{\#}=0 \quad$ for $2 \leqq i, j \leqq n$.

It is to be noticed that:
(3.4) Let $\pi_{0}: S^{n} \times\left(S^{n} * S^{n}\right) \rightarrow S^{n} * S^{n} * S^{n}$ be the natural projection, then the homomorphism $\pi_{0}^{*}: H^{r}\left(S^{n} * S^{n} * S^{n} ; Z_{2}\right) \rightarrow H^{r}\left(S^{n} \times\left(S^{n} * S^{n}\right) ; Z_{2}\right)$ induced by π_{0} is isomorphic into for any r.
§4. The mod 3 cohomology. Using the notations in CP, we can take as a base for $H^{*}\left(\vartheta_{n 3} ; Z_{3}\right)$ the following:

$$
1^{\#}, g_{n}^{\#}(1), \quad g_{2 n}^{\#}(1,2), \text { and } a_{n+s}^{\#}(2 \leqq s \leqq 2 n) .
$$

Let $\bar{S}: C^{r}\left(\vartheta_{n 3} ; Z_{3}\right) \rightarrow C^{r}\left(\vartheta_{n 3} ; Z_{3}\right)$ be the cochain map induced by \bar{S}, and $\bar{\pi}: C^{r}\left(S^{n} * S^{n} * S^{n} ; Z_{3}\right) \rightarrow C^{r}\left(\vartheta_{n 3} ; Z_{3}\right)$ the cochain map induced by the natural projection. Then we can define a cochain map $\phi: C^{r}\left(\vartheta_{n 3} ; Z_{3}\right)$ $\rightarrow C^{r}\left(S^{n} * S^{n} * S^{n} ; Z_{3}\right)$ by $\bar{\pi} \phi=1+\bar{S}$. Let $\phi^{*}: H^{r}\left(\vartheta_{n 3} ; Z_{3}\right) \rightarrow H^{r}\left(S^{n} * S^{n} *\right.$ $\left.S^{n} ; Z_{3}\right)$ be the homomorphism induced by ϕ. Write $\bar{g}_{n}^{\#}=\phi^{*} g_{n}^{\#}(1)$, $\bar{g}_{2 n}^{\#}=\phi^{*} g_{2 n}^{\#}(1,2), \bar{a}_{n+s}^{\#}=\phi^{*} a_{n+s}^{\#}$. Then we have
(4.1) As a base for the vector space $H^{*}\left(S^{n} * S^{n} * S^{n} ; Z_{3}\right)$, we can take the following:
$1^{\#}, \bar{g}_{n}^{\#}, \bar{g}_{2 n}^{\#}(n:$ even $), \bar{a}_{n+4 \alpha+1}^{\#}(1 \leqq \alpha \leqq[(2 n-1) / 4])$, and $\bar{a}_{n+4 \alpha}^{\#}(1 \leqq$ $\alpha \leqq[n / 2]),{ }^{4}$ where $[k]$ denotes the greatest integer $\leqq k$.

Denote by $\Delta_{3}: H^{r}\left(S^{n} * S^{n} * S^{n} ; Z_{3}\right) \rightarrow H^{r+1}\left(S^{n} * S^{n} * S^{n} ; Z_{3}\right)$, and \mathcal{P}^{t} : $H^{r}\left(S^{n} * S^{n} * S^{n} ; Z_{3}\right) \rightarrow H^{r+4 i}\left(S^{n} * S^{n} * S^{n} ; Z_{3}\right)$ the Bockstein homomorphism and the reduced power respectively. Then we have
i) $\mathcal{S}^{i} \bar{g}_{n}^{\#}=(-1)^{i+1} \bar{a}_{n+4 i}^{\#}(i \neq 0)$,
ii) $\mathcal{P}^{i} \bar{g}_{2 n}^{\#}=0 \quad(i \neq 0)$,
iii) $\mathcal{P}^{i} \bar{a}_{n+4 \alpha+1}^{\#}={ }_{2 \alpha} C_{l} \bar{a}_{n+4(\alpha+i)+1}^{\#}$,
iv) $\mathcal{P}^{i} \bar{a}_{n+4 \alpha}^{\#}={ }_{2 \alpha-1} C_{i} \bar{a}_{n+4(\alpha+i)}^{\#}$.
i) $\Delta_{3} \bar{g}_{n}^{\#}=0, \quad$ ii) $\quad \Delta_{3} \bar{g}_{3 n}^{\#}=0, \quad$ iii) $\quad \Delta_{3} \bar{a}_{n+4 \alpha+1}^{\#}=0$,
iv) $\Delta_{3} \bar{a}_{n+4 \alpha}^{\#}=\bar{a}_{n+4 \alpha+1}^{\#}$.
i) $\bar{g}_{n}^{\text {\# }} \smile \bar{g}_{n}^{\text {\# }}=(-1)^{n / 2+1} \bar{a}_{3 n}^{\text {\# }} \quad$ ($n:$ even $)$,

$$
=0 \quad(n: \text { odd })
$$

ii) $\quad \bar{g}_{n}^{\#} \smile \bar{a}_{n+4 \alpha+\varepsilon}^{\#}=0 \quad(\varepsilon=0,1)$,
4) The lower suffix denotes the dimension.

$$
\bar{a}_{n+4 \alpha+\varepsilon}^{\#} \smile \bar{a}_{n+4 \beta+\varepsilon^{\prime}}^{\#}=0 \quad\left(\varepsilon, \varepsilon^{\prime}=0,1\right) .
$$

§5. Integral homology groups. Let A be an abelian group. Then we denote by $C(A, p)$ the p-primary component of A, and $C(A, \infty)$ the free component of A. For the integral homology group $H_{r}\left(S^{n} * S^{n} * S^{n} ; Z\right.$), we have the following results:
(5.1) i) $C\left(H_{r}\left(S^{n} * S^{n} * S^{n} ; Z\right), \infty\right) \approx Z$ for $r=0, n, 2 n$ with even $n, 3 n$ with even $n ; \quad=0$ for other r.
ii) $C\left(H_{r}\left(S^{n} * S^{n} * S^{n} ; Z\right), 2\right) \approx Z_{2}$ for $r=j n+2 k$ with $1 \leqq k \leqq[(n$ -1)/2] and $j=1,2 ; \quad=0$ for other r.
iii) $C\left(H_{r}\left(S^{n} * S^{n} * S^{n} ; Z\right), 3\right) \approx Z_{3}$ for $r=n+4 k$ with $1 \leqq k \leqq[(2 n$
-1)/4]; $\quad=0$ for other r.
iv) $C\left(H_{r}\left(S^{n} * S^{n} * S^{n} ; Z\right), q\right)=0$ for odd prime $q \neq 3$
and any r.
Finally we can verify
(5.2) The 3 -fold symmetric product of an n-sphere and the EilenbergMacLane complex $K(Z, n)$ are of the same $(n+4)$-homotopy type.

