158. Cohomology of the p-fold Cyclic Products

By Minoru NakaOka
Osaka City University, Osaka
(Comm. by K. Kunugi, m.J.A., Dec. 12, 1955)

In this paper, we study certain cohomological properties of the p-fold cyclic product of a finite complex. ${ }^{1)}$ Our approach is based on the studies of R. Thom-W. T. Wu ${ }^{2}$ who gave an intrinsic definition of the Steenrod reduced powers. We state here only the results without proofs. Full details, together with an easy complete treatment of the Thom-Wu theory, will appear in a shortcoming paper. ${ }^{3)}$
§1. Let W be a finite simplicial complex, and let t be a transformation on W satisfying the following conditions: i) t is a simplicial map of period p; ii) if a simplex is mapped onto itself by t, it remains pointwise fixed. Let F be the set of fixed points under t, then F is a subcomplex of W. Denote by $C^{r}(W, F ; G)$ the r-cochain group of (W, F) with coefficients in an abelian group G, and define cochain maps $\sigma, \tau: C^{r}(W, F ; G) \longrightarrow C^{r}(W, F ; G)$ by

$$
\sigma=\sum_{i=0}^{p-1} t^{\ell \#}, \quad \tau=1-t^{\#}
$$

respectively, where $t^{\#}$ is the cochain map induced by t. We shall also denote these maps by ρ and $\bar{\rho}$ agreeing that ρ may stand for $\sigma, \bar{\rho}$ for τ or vice versa. Then the sequence $\left\{\rho C^{r}(W, F ; G), \delta\right\}$ of the image groups $\rho C^{r}(W, F ; G)$ and the coboundary homomorphisms δ form a cochain complex. The cohomology group of this complex will be denoted by ${ }^{ } H^{r}(W, F ; G)$. Then we have the Smith-Richardson exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow \longrightarrow{ }^{\mathrm{p}} H^{r}(W, F ; G) \xrightarrow{\alpha_{\mathrm{p}}} H^{r}(W, F ; G) \xrightarrow{\beta_{\mathrm{p}}}{ }^{ } H^{r}(W, F ; G) \\
& \xrightarrow{r_{\mathrm{p}}} H^{r+1}(W, F ; G) \longrightarrow \cdots .
\end{aligned}
$$

Let W_{t} be the orbit space over W relative to t, and $\pi: W \longrightarrow W_{t}$ the natural projection. Then W_{t} is a simplicial complex having $F_{t}=\pi(F)$ as a subcomplex, and we have
$I^{*}: H^{r}\left(W_{t}, F_{t} ; G\right) \approx{ }^{\circ} H^{r}(W, F ; G), \quad \pi^{*}: H^{r}\left(F_{t} ; G\right) \approx H^{r}(F ; G)$, where both I^{*} and π^{*} are homomorphisms induced by π. Furthermore we have the following results:

[^0](1.1) Let $\pi^{*}: H^{r}\left(W_{t} ; G\right) \longrightarrow H^{r}(W ; G)$ be a homomorphism induced by π. If $a \in H^{r}\left(W_{t} ; G\right)$ and $\pi^{*}(a)=0$, then $p a=0$.
(1.2) Let G be a field of characteristic q, not a divisor of p. Then π^{*} in (1.1) is isomorphic into, and its image is $\sigma^{*} H^{r}(W ; G)$.

Write $\mu=I^{*-1} \gamma_{\tau} \gamma_{\sigma} I^{*}$, then we have a homomorphism

$$
\mu: H^{r}\left(W_{t} ; F_{t}, G\right) \longrightarrow H^{r+2}\left(W_{t}, F_{t} ; G\right) .
$$

Since $p_{\sigma}=\sigma^{2}$, the inclusion defines a homomorphism $\psi:{ }^{\circ} H^{r}(W, F ; G)$ $\longrightarrow{ }^{\tau} H^{\tau}\left(W, F ; G_{p}\right)$, where G_{p} denotes the factor group $G / p G$. We may now consider a homomorphism

$$
\nu: H^{r}\left(W_{t}, F_{t} ; G\right) \longrightarrow H^{r+1}\left(W_{t}, F_{t} ; G_{p}\right)
$$

defined by $\nu=I^{*-1} \gamma_{\tau} \psi I^{*}$. Define next a homomorphism $\phi: C^{v}(W ; G)$ $\longrightarrow C^{r}\left(W_{t} ; G\right)$ by $\pi \phi=\sigma$. Then ϕ is a cochain map, and hence it induces a homomorphism

$$
\phi^{*}: H^{r}(W ; G) \longrightarrow H^{r}\left(W_{t} ; G\right) .
$$

Let $\eta: G \longrightarrow G_{p}$ be the natural projection, then $\eta \phi C^{r}(W ; G) \subset C^{r}\left(W_{t}\right.$, $\left.F_{t} ; G_{p}\right)$. Therefore, ϕ induces a homomorphism

$$
\phi_{0}^{*}: H^{r}(W ; G) \longrightarrow H^{r}\left(W_{t}, F_{t} ; G_{p}\right) .
$$

Let $j^{*}: H^{r}\left(W_{t}, F_{t} ; G_{p}\right) \longrightarrow H^{r}\left(W_{t} ; G_{p}\right)$ be the inclusion, then $j^{*} \phi_{0}^{*}=\eta \phi^{*}$ is obvious.

The homomorphisms μ, ν, and ϕ_{0}^{*} are of importance in our study. Let $i^{*}: H^{r}(W ; G) \longrightarrow H^{r}(F ; G)$ be the inclusion, and $\delta^{*}: H^{r}\left(F_{t} ; G\right) \longrightarrow$ $H^{r+1}\left(W_{t}, F_{t} ; G\right)$ the coboundary homomorphism, then we have
(1.3) $\quad \nu^{2}=0$ if $p \geqq 3$, and $=\eta \mu$ if $p=2 ; ~ \mu \nu=\nu \mu$.
(1.4) $\nu \phi_{0}^{*}=0$ if $p \geqq 3$, and $=\eta \delta^{*} \pi^{*-1} i^{*}$ if $p=2 ; ~ \mu \phi_{0}^{*}=-\nu \delta^{*} \pi^{*-1} i^{*}$. From here to (3.3), the coefficients group for cohomology will be the group Z_{p} of integers $\bmod p$. Let $a^{\prime}, b^{\prime} \in H^{*}\left(W ; Z_{p}\right), a, b \in H^{*}\left(W_{t}\right.$, $F_{t} ; Z_{p}$), and denote by \smile the cup product. Then we have

$$
\begin{align*}
& \mu^{\alpha}(a) \smile \mu^{\beta}(b)=\mu^{\alpha+\beta}(\alpha \smile b),(\alpha, \beta \geqq 0) \text {, } \tag{1.5}\\
& \mu^{\alpha}(a) \smile_{\nu}(b)=(-1)^{d i m a} \mu^{\alpha} \nu\left(a^{\smile} b\right), \quad(\alpha \geqq 0), \\
& \nu(a)^{\smile} \nu(b)=0 \text { if } p \geqq 3 \text {, and }=\mu\left(a^{\smile} b\right) \text { if } p=2 \text {. } \\
& \dot{\phi}_{0}^{*}\left(\dot{a}^{\prime} \sigma^{*} b^{\prime}\right)=\phi_{0}^{*}\left(a^{\prime}\right){ }^{\smile} \phi_{0}^{*}\left(b^{\prime}\right) \text {, } \tag{1.6}\\
& \nu\left(\phi_{0}^{*} a^{\prime} \phi_{0}^{*} b^{\prime}\right)=0, \mu\left(\phi_{0}^{*} a^{\prime} \smile \phi_{0}^{*} b^{\prime}\right)=0 .
\end{align*}
$$

Let (X, A) be any pair of a simplicial complex X and its subcomplex A, and let

$$
\begin{aligned}
\odot^{s}: H^{q}\left(X, A ; Z_{p}\right) & \longrightarrow H^{q+2 s(p-1)}\left(X, A ; Z_{p}\right),(p \geqq 3), \\
S q^{i}: H^{q}\left(X, A ; Z_{2}\right) & \longrightarrow H^{q+i}\left(X, A ; Z_{2}\right), \\
\Delta_{p}: H^{q}\left(X, A ; Z_{p}\right) & \longrightarrow H^{q+1}\left(X, A ; Z_{p}\right),
\end{aligned}
$$

be the Steenrod reduced power, the Steenrod square and the Bockstein homomorphism respectively. ${ }^{4)}$ Then we have the following:

$$
\begin{align*}
& \mathcal{P}^{s} \mu-\mu \mathcal{P}^{s}=\mu^{\nu} \mathcal{P}^{s-1}, \quad \mathcal{P}^{s} \nu=\nu \mathcal{P}^{s}, \quad S q^{i} \nu-\nu S q^{i}=\nu^{2} S q^{i-1} . \tag{1.7}\\
& \phi_{0}^{*} \mathcal{P}^{s}-\mathcal{P}^{s} \phi_{0}^{*}=\mu^{p-1} \odot^{s-1} \phi_{0}^{*}, \quad \phi_{0}^{*} S q^{i}-S q^{i} \phi_{0}^{*}=\nu S q^{i-1} \phi_{0}^{*} .
\end{align*}
$$

[^1]\[

$$
\begin{align*}
& \Delta_{p} \nu+\nu \Delta_{p}=\mu, \quad \mu \Delta_{p}=\Delta_{p} \mu . \tag{1.9}\\
& \phi_{0}^{*} \Delta_{p}-\Delta_{p} \phi_{0}^{*}=\delta^{*} \pi^{*-1} i^{*} . \tag{1.10}
\end{align*}
$$
\]

We shall prove in the paper ${ }^{1)}$ the above formulas by making only use of the elementary simplicial cohomology theory. ${ }^{5)}$
§ 2. Let K be a finite simplicial complex, then we shall denote by $\boldsymbol{X}(K)$ the p-fold Cartesian product of K. Let $T: \boldsymbol{X}(K) \longrightarrow \boldsymbol{X}(K)$ be the map defined by the cyclic permutation of coordinates. Then T is a transformation on $\boldsymbol{X}(K)$, and satisfies the conditions i) and ii) in $\S 1$ for an appropriate simplicial decomposition of $\boldsymbol{X}(K)$. Therefore we may apply the results in $\S 1$ with $W=X(K)$ and $t=T$. The orbit space over $\boldsymbol{X}(K)$ relative to T is called the p-fold cyclic product of K, and will be denoted by $\boldsymbol{Z}(K)$ in the following. The set of fixed points under T is the diagonal $\boldsymbol{D}(K)=\{(x, x, \ldots, x) \mid x \in K\}$. Write $\boldsymbol{d}(K)=\pi \boldsymbol{D}(K)$, where $\pi: \boldsymbol{X}(K) \longrightarrow \boldsymbol{Z}(K)$ is the projection, and define a homeomorphism $d_{0}: K \longrightarrow \boldsymbol{d}(K)$ by $d_{0}(x)=\pi(x, x, \ldots, x)(x \in K)$. Denote by $N^{r}\left(\boldsymbol{Z}(K), \boldsymbol{d}(K) ; Z_{p}\right)$ the kernel of $\pi^{*}: H^{r}\left(\boldsymbol{Z}(K), \boldsymbol{d}(K) ; Z_{p}\right)$ $\longrightarrow H^{r}\left(\boldsymbol{X}(K), \boldsymbol{D}(K) ; Z_{p}\right)$, and define a homomorphism $E_{s}: H^{q}\left(K ; Z_{p}\right)$ $\longrightarrow H^{q+s}\left(\boldsymbol{Z}(K), \boldsymbol{d}(K) ; Z_{p}\right) \quad(s>0)$ by

$$
E_{2 \alpha+1}=\mu^{\alpha} \delta^{*} d_{0}^{*-1}, \quad E_{2 \alpha+2}=\mu^{\alpha} \nu \delta^{*} d_{0}^{*-1} .
$$

Then we have ${ }^{2)}$
(2.1) E_{s} is isomorphic into for $1 \leqq s \leqq(p-1) q$.
(2.2) $N^{r}\left(\boldsymbol{Z}(K), \boldsymbol{d}(K) ; Z_{p}\right)=\sum_{s=m}^{r=1} E_{r-s} H^{s}\left(K ; Z_{p}\right),{ }^{6)}$ where m is the greatest integer $\leqq(r+p-1) / p$.

Let $\Omega\left(K ; Z_{p}\right)$ be a homogeneous base for the vector space $H^{*}(K$; $\left.Z_{p}\right)$, then the cross product $b_{1} \times b_{2} \times \cdots \times b_{p}\left(b_{i} \in \Omega\left(K ; Z_{p}\right)\right)$ is an element of $H^{*}\left(\boldsymbol{X}(K) ; Z_{p}\right)$. Consider a set $\mathfrak{B}_{r}\left(\Omega\left(K ; Z_{p}\right)\right)=\left\{b_{1} \times b_{2} \times \cdots \times b_{p} \mid b_{i} \in \Omega\right.$ $\left.\left(K ; Z_{p}\right), \sum_{i=1}^{p} \operatorname{dim} b_{i}=r\right\}$ and its subset $\mathfrak{B}_{r}^{\prime \prime}\left(\Omega(K) ; Z_{p}\right)=\{b \times b \times \cdots \times b$ $\left.\mid b \in \Omega\left(K ; Z_{p}\right), p \operatorname{dim} b=r\right\}$, and let $\mathfrak{B}_{r}^{\prime}\left(\Omega\left(K ; Z_{p}\right)\right)=\mathfrak{B}_{r}\left(\Omega\left(K ; Z_{p}\right)\right)-\mathfrak{B}_{r}^{\prime \prime}(\Omega(K$; $\left.\left.Z_{p}\right)\right)$. Then it is well known that $\mathfrak{B}_{r}\left(\Omega\left(K ; Z_{p}\right)\right)$ is a base for $H^{r}(\boldsymbol{X}(K)$; $\left.Z_{p}\right)$. Let $\mathfrak{B}^{\prime \prime}\left(\Omega\left(K ; Z_{p}\right)\right) \subset H^{r}\left(\boldsymbol{X}(K) ; Z_{p}\right)$ be a vector subspace spanned by $\mathfrak{B}_{r}^{\prime}\left(\Omega\left(K ; Z_{p}\right)\right)$. Then we have
(2.3) $\quad H^{r}\left(\boldsymbol{Z}(K), \boldsymbol{d}(K) ; Z_{p}\right)=N^{r}\left(\boldsymbol{Z}(K), \boldsymbol{d}(K) ; Z_{p}\right)+\phi_{0}^{*}\left(\mathfrak{B}^{r}\left(\Omega\left(K ; Z_{p}\right)\right)\right),{ }^{6)}$ and the kernel of ϕ_{0}^{*} is $\tau^{*} \mathfrak{B}^{\prime r}\left(\Omega\left(K ; Z_{p}\right)\right)$.
It follows from (2.2) and (2.3) that any element of $H^{r}(\boldsymbol{Z}(K), \boldsymbol{d}(K)$; Z_{p}) can be represented as a linear combination of elements with types $E_{s}(x)$ and $\phi_{0}^{*}\left(x_{1} \times x_{2} \times \cdots \times x_{p}\right)$, where $x, x_{i} \in H^{*}\left(K ; Z_{p}\right)$.

We shall next consider the operations $\mathcal{P}^{s}, \Delta_{p}$, and \smile in $H^{*}(\boldsymbol{Z}(K)$, $\left.\boldsymbol{d}(K) ; Z_{p}\right)$. The formulas (1.3)-(1.10) yield the following:

[^2]6) This sum is direct.
i) $\Delta_{p} \phi_{0}^{*}\left(x_{1} \times x_{2} \times \cdots \times x_{p}\right)$
\[

$$
\begin{equation*}
=\phi_{0}^{*}\left(\Delta_{p}\left(x_{1} \times x_{2} \times \cdots \times x_{p}\right)\right)-E_{1}\left(x_{1} \smile x_{2} \smile \ldots \smile x_{p}\right) . \tag{2.4}
\end{equation*}
$$

\]

ii) $\quad \rho^{s} \phi_{0}^{*}\left(x_{1} \times x_{2} \times \cdots \times x_{p}\right)=\phi_{0}^{*}\left(\rho^{s}\left(x_{1} \times x_{2} \times \cdots \times x_{p}\right)\right)$
$+\sum_{j=1}^{s}(-1)^{j+1} E_{2 \cdot(p-1)} P^{s-j}\left(x_{1}{ }^{\smile} x_{2} \smile \ldots{ }_{x_{p}}\right)$.
iii) $S q^{i} \phi_{0}^{*}\left(x_{1} \times x_{2}\right)=\phi_{0}^{*}\left(S q^{i}\left(x_{1} \times x_{2}\right)\right)+\sum_{j=1}^{i} E_{j} S q^{i-j}\left(x_{1} \smile x_{2}\right)$.
i) $\quad \Delta_{p} E_{2 \alpha+1}(x)=-E_{2 \alpha+1}\left(\Delta_{p} x\right), \quad \Delta_{p} E_{2 \alpha+2}(x)=E_{2 \alpha+3}(x)+E_{2 \alpha+2}\left(\Delta_{p} x\right)$.
ii) $\quad \rho^{s} E_{2 \alpha+1}(x)=\sum_{j j-0 \alpha}^{s} C_{s-j} E_{2(s-j)(p-1)+2 \alpha+1}\left(\rho^{j} x\right)$,

$$
\begin{equation*}
\mathcal{P}^{s} E_{2 \alpha+2}(x)=\sum_{j=0 \alpha}^{s} C_{s-j} E_{2(s-j)(p-1)+2 \alpha+2}\left(\mathcal{P}^{j} x\right) . \tag{2.5}
\end{equation*}
$$

iii) $\quad S q^{i} E_{\alpha+1}(x)=\sum_{j=0}^{i} C_{i-j} E_{\alpha+1+i-j}\left(S q^{j} x\right) .{ }^{7}$

$$
\text { i) } \quad \begin{align*}
& \phi_{0}^{*}\left(x_{1} \times x_{2} \times \cdots \times x_{p}\right) \smile{ }^{\phi_{0}^{*}}\left(y_{1} \times y_{2} \times \cdots \times y_{p}\right) \tag{2.6}\\
& \quad=\sum_{j=1}^{p}(-1)^{\varepsilon_{j}} \phi_{0}^{*}\left(\left(x_{1} y_{j}\right) \times\left(x_{2} \smile y_{j+1}\right) \times \cdots \times\left(x_{p} \smile y_{j-1}\right)\right) \text {, }
\end{align*}
$$

where $\varepsilon_{i}=\left(1+\sum_{i=1}^{p} \operatorname{dim} y_{i}\right)\left(\sum_{i=1}^{i} \operatorname{dim} y_{i}\right)+\sum_{\alpha=0}^{p-2}\left(\operatorname{dim} y_{\alpha+j}\left(\sum_{\beta=\alpha+2}^{p} \operatorname{dim} x_{\beta}^{\#}\right)\right)$.
ii) $E_{s}(x){ }^{\smile} \phi_{0}^{*}\left(x_{1} \times x_{2} \times \cdots \times x_{p}\right)=0, E_{s}(x)^{\smile} E_{t}(y)=0$.
i) Let $p \geqq 3$ and $\operatorname{dim} x=q$, then

$$
\begin{align*}
& \phi_{0}^{*}(x \times x \times \cdots \times x)=\chi_{q} \sum_{0 \leq j<q / 2}(-1)^{j} E_{(p-1)(q-2 j)} P^{j}(x), \tag{2.7}\\
& E_{(p-1 \backslash q+1}(x)=\sum_{0<j \leq q / 2}(-1)^{j+1} E_{(p-1)(q-2 j)+1} \mathcal{P}^{j}(x) \\
& \quad+\sum_{0 \leq j<q / 2}(-1)^{j+1} E_{(p-1)(q-2 j)} \Delta_{p} \mathcal{P}^{j}(x),
\end{align*}
$$

where χ_{q} is a certain non-zero integer $\bmod p$, depending only on $q{ }^{8)}$
ii) $\quad \phi_{0}^{*}(x \times x)=\sum_{j j=0}^{q-1} E_{q-j} S q^{j}(x), \quad E_{q+1}(x)=\sum_{j=0}^{q} E_{q-j+1} S q^{j}(x)$.

Since we have for $r>1$ an exact sequence

$$
0 \longrightarrow H^{r-1}\left(\boldsymbol{d}(K) ; Z_{p}\right) \xrightarrow{\delta^{*}} H^{v}\left(\boldsymbol{Z}(K), \boldsymbol{d}(K) ; Z_{p}\right) \xrightarrow{j^{*}} H^{r}\left(\boldsymbol{Z}(K) ; Z_{p}\right) \longrightarrow 0
$$

the cohomology of $\boldsymbol{Z}(K)^{9)}$ can be determined immediately from that of ($\boldsymbol{Z}(K), \boldsymbol{d}(K)$) above-mentioned. For example, as for the rank of the group $H^{r}\left(\boldsymbol{Z}(K) ; Z_{p}\right)$ we have
(2.8) Denote by $R_{r}(\boldsymbol{Y} ; p)$ the rank of $H^{r}\left(\boldsymbol{Y} ; Z_{p}\right)$, then

$$
R_{r}(\boldsymbol{Z}(K) ; p)=\sum_{m \leq s \leq r-\Omega} R_{s}(K ; p)+1 / p\left\{R_{r}(\boldsymbol{X}(K), p)-R_{r / p}(K, p)\right\}
$$

where m is the same as in (2.2), and it is to be read that $R_{r / p}(K, p)$ $=0$ if r is not divisible by p.
§3. As a special case, we shall consider the cohomology of the p-fold cyclic product of a sphere. ${ }^{10)}$ Let S^{n} be an n-sphere, and let $e_{n}^{\#} \in H^{n}\left(S^{n} ; Z_{p}\right)$ be a generator. Write $a_{s}^{\#}=j^{*} E_{s-n}\left(e_{n}^{\#}\right) \in H^{s}\left(\boldsymbol{Z}\left(S^{n}\right)\right.$; Z_{p}) for $n+2 \leqq s \leqq n p$. Given a set $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right\}$ of $q(1 \leqq q \leqq p)$ different integers $\bmod p$, we shall also write

$$
g_{n q}^{\#}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right)=\phi^{*}\left(x_{1} \times x_{2} \times \cdots \times x_{p}\right) \in H^{n q}\left(\boldsymbol{Z}\left(S^{n}\right) ; Z_{p}\right),
$$

where $x_{j}=e_{n}^{\#}$ if $j \equiv \alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} \bmod p$, and $=1^{\#}$ otherwise. ${ }^{11)}$ Then we have the following:
7) ${ }_{\alpha} C_{\beta}$ denotes the binomial coefficient with the usual conventions.
8) If q is even, then $\chi_{q}=(-1)^{q / 2}$.
9) The homology groups of $\boldsymbol{Z}(K)$ for $p=2$ are also calculated in a paper of S. K. Stein: Homology of the two-fold symmetric product, Ann. Math., 59 (1954).
10) Using different methods from ours, this special case is studied in S. D. Liao: On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954).
11) $1^{\#}$ denotes the cohomology class containing the fundamental zero-cocycle.
(3.1) $a_{s}^{\#}$ and $g_{n q}^{\#}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right)$ are non-zero elements; $g_{n q}^{\#}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right)$ $= \pm g_{n q}^{\#}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{q}\right)$ if and only if there is an integer k such that $\left\{\alpha_{1}+k, \alpha_{2}+k, \ldots, \alpha_{q}+k\right\}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{q}\right\}$; there is ${ }_{p} C_{q} / p$ different $g_{n q}^{\# \#}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right)$ for a given q; as a base for $H^{*}\left(\boldsymbol{Z}\left(S^{n}\right) ; Z_{p}\right)$, we can take $1^{\#}, a_{s}^{\#}(n+2 \leqq s \leqq n p)$, and $g_{n q}^{\#}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right)$ for $1 \leqq q \leqq p-1$ and every set $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right\} ; g_{n p}^{\#}(1,2, \ldots, p)=\chi_{n} a_{n p}^{\#}$.
i) $\Delta_{p} g_{n q}^{\# \#}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right)=0 ; \Delta_{p} a_{n+2 \alpha+1}^{\# \#}=0, \Delta_{p} a_{n+2 \alpha+2}^{\#}=a_{n+2 \alpha+3}^{\#}$.
ii) $\mathcal{P}^{s} g_{n}^{\# \#}(1)=(-1)^{s+1} a_{n+2 s^{(}(p-1)}^{\#} \quad(s \neq 0)$, $\mathcal{P}^{s} g_{n q}^{\# \#}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right)=0$ if $q>1$ and $s \neq 0$, $\mathcal{P}^{s} a_{n+2 \alpha+1}^{\# \#}={ }_{\alpha} C_{s} a_{n+2 s(p-1)+2 \alpha+1}^{\# \#}, \quad P^{s} a_{n+2 \alpha+2}^{\#}={ }_{\alpha} C_{s} a_{n+2 s(p-1)+2 \alpha+2}^{\#}$.
iii) $\quad S q^{i} g_{n}^{\# \#}(1)=a_{n+i}^{\#}(i \geqq 2), \quad S q^{i} a_{n+\alpha+1}^{\#}={ }_{\alpha} C_{i} a_{n+\alpha+i+1}^{\#}$.

We can also determine by (2.6) the cup product in $H^{*}\left(\boldsymbol{Z}\left(S^{n}\right) ; Z_{p}\right)$. For example we have
(3.3) Let $p \geqq 3$, then $g_{n}^{\#(1)} \smile_{n}^{\# \#}(1)=2\left(\sum_{k=2}^{(p+1) / 2} g_{2 n}^{\#}(1, k)\right)$ for even n, and $=0$ for odd n. Let $p=2$, then $g_{n}^{\#}(1) \smile g_{n}^{\#}(1)=a_{2 n}^{\#}$.

Finally we shall determine the integral cohomology group $H^{r}\left(\boldsymbol{Z}\left(S^{n}\right) ; Z\right)$. Given an abelian group A and a prime number q, we shall denote by $C(A, q)$ the q-primary component of A, and by $C(A, \infty)$ the free component of A. Moreover write $J(A ; r)$ for the direct sum of r groups each of which is isomorphic with A. Then, from (1.1), (1.2), and (2.8), we have by the universal coefficient theorem
i) $C\left(H^{i}\left(\boldsymbol{Z}\left(S^{n}\right) ; Z\right), q\right)=0$ for any i and $q \neq p, \infty$.
ii) $C\left(H^{i}\left(\boldsymbol{Z}\left(S^{n}\right) ; Z\right), \infty\right) \approx Z$ for $i=0$ and $p n$ with $(p-1) n=$ even,
$\approx J\left(Z,{ }_{p} C_{q} / p\right)$ for $i=n p$ with $1 \leqq q \leqq p-1,=0$ for other i.
iii) $C\left(H^{i}\left(\boldsymbol{Z}\left(S^{n}\right), Z\right) ; p\right) \approx Z_{p}$ if $i-n$ is odd and $3 \leqq i-n \leqq(p-1) n$, $=0$ for other i.
Note that the homomorphism $E_{2 \alpha+1}$ can be also defined for the integral cohomology groups by the same formula as in §2. Using this homomorphism $E_{2 \alpha+1}=\mu^{\alpha} \delta^{*} d_{0}^{*-1}: H^{q}(K ; Z) \longrightarrow H^{q+2 \alpha+1}(\boldsymbol{Z}(K), \boldsymbol{d}(K) ; Z)$ and the homomorphism $\phi^{*}: H^{r}(\boldsymbol{X}(K) ; Z) \longrightarrow H^{r}(\boldsymbol{Z}(K) ; Z)$, we have (3.5) Let $e_{n}^{*} \in H^{n}\left(S^{n} ; Z\right)$ be a generator. Then $j^{*} E_{2 \alpha+1}\left(e_{n}^{*}\right)$, is a generator of $C\left(H^{n+2 \alpha+1}\left(\boldsymbol{Z}\left(S^{n}\right) ; Z\right), p\right)$ for $1 \leqq \alpha \leqq \frac{1}{2}(p n-n-1)$ and $C\left(H^{n q}\right.$ $\left.\left(\boldsymbol{Z}\left(S^{n}\right) ; Z\right), \infty\right)=\phi^{*} H^{n q}\left(\boldsymbol{X}\left(S^{n}\right) ; \boldsymbol{Z}\right)$.

[^0]: 1) Throughout this paper, p denotes an arbitrarily fixed prime integer.
 2) R. Thom: Une théorie intrinsèque des puissances de Steenrod, Strasbourg Colloq., 1951 (mimeographed); W. T. Wu: Sur les puissances de Steenrod, ibid.
 3) M. Nakaoka: Cohomology theory of a complex with a transformation of prime period and its applications, to appear in J. Inst. Polyt., Osaka City Univ.
[^1]: 4) N. E. Steenrod: Cyclie reduced powers of cohomelogy classes, Proc. Nat. Acad. Sci., U. S. A., 39 (1953).
[^2]: 5) Some of the formulas (1.3)-(1.10) are proved by Thom by making use of a multiplicative property in the Cartan-Leray cohomology theory (see Reference 2). As for the formulas for $p=2$, see also R. Bott: On symmetric products and the Steenrod squares, Ann. Math., 57 (1953).
