157. Some Trigonometrical Series. XVII

By Shin-ichi Izumi and Masako Satô
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., Dec. 12, 1955)

1. G. H. Hardy and J. E. Littlewood [1] have proved the following

Theorem 1. Let $0<\alpha<1, p>1$ and $\alpha>1 / p$. If $f(x)$ belongs to the Lip (α, p) class, then $f(x)$ is equivalent to a function in the Lip $(\alpha-1 / p)$ class.

This was generalized by one of the authors in the following form [2]:

Theorem 2. Under the assumption of Theorem 1, (1)

$$
\left|s_{n}(x, f)-f(x)\right| \leqq A / n^{\sigma-1 / p}
$$

where $s_{n}(x, f)$ denotes the nth partial sum of Fourier series of $f(x)$ and A is an absolute constant.

It is well known that (1) implies that $f(x)$ belongs to the $\operatorname{Lip}(\alpha-1 / p)$ class.

On the other hand, G. H. Hardy and J. E. Littlewood [3] (cf. [4], p. 225) have proved the following

Theorem 3. (i) Let $0<\alpha<1, \beta>0$ and $\alpha+\beta<1$. If $f(x)$ belongs to the Lip α class, then the β th integral of $f(x)$ belongs to the Lip $(\alpha+\beta)$ class.
(ii) Let $0<\beta<\alpha \leqq 1$. If $f(x)$ belongs to the Lip α class, then the β th derivative of $f(x)$ belongs to the Lip $(\alpha-\beta)$ class.

In this theorem, the conclusion can not be replaced by (1) with $\alpha \pm \beta$ instead of $\alpha-1 / p$.

We can in fact prove
Theorem 4. (i) Let $0<\alpha<1, p>1, \alpha-1 / p=\beta>0$ and $\gamma>0$, $\alpha+\gamma<1$. Then if $f(x)$ belongs to the Lip (α, p) class, then
(2) $\left|s_{n}\left(x, f_{r}\right)-f_{r}(x)\right| \leqq A / n^{\beta+\gamma}$, a.e. unif.
where $f_{r}(x)$ is the rth integral of $f(x)$.
(ii) Let $0<\alpha<1, p>1, \alpha-1 / p=\beta>0$ and $0<\gamma<\alpha$. Then if $f(x)$ belongs to the Lip (α, p) class, then

$$
\left|s_{n}\left(x, f^{r}\right)-f^{\Upsilon}(x)\right| \leqq A / n^{\beta-r}
$$

where $f(x)$ is the rth derivative of $f(x)$.
By Theorem 1, the $\operatorname{Lip}(\alpha, p)$ class is contained in the $\operatorname{Lip}(\alpha-1 / p)$ class; hence both the assumption and the conclusion of Theorem 4 are stronger than those of Theorem 3, respectively.

Further G. H. Hardy and J. E. Littlewood [3] (cf. [4], p. 227) have proved the following

Theorem 5. Let $p>1,1 / p<\alpha<1 / p+1$. If $f(x)$ is L^{p}-integrable, then α th integral of $f(x)$ belongs to the Lip $(\alpha-1 / p)$ class.

We can generalize this in the following form, in the case of $\alpha<1$,

Theorem 6. Let $p>1,1 / p<\alpha<1$. If $f(x)$ is L^{p}-integrable, then we have

$$
\left|s_{n}\left(x, f_{\alpha}\right)-f_{\alpha}(x)\right| \leqq A / n^{\alpha-1 / p}
$$

For the proof of Theorems 4 and 6 we use the method in [5]. In $\S 2$ we prove Theorem 4, (i). Since Theorem 4, (ii) is proved quite similarly, we omit its proof (cf. [4]). In §4, we prove Theorem 6.
2. Proof of Theorem 4, (i). It is sufficient to prove (2), replaced s_{n} by s_{n}^{*}. The γ th integral of $f(x)$ is defined by

$$
\begin{equation*}
f_{\mathrm{r}}(x)=\frac{1}{\Gamma(\gamma)} \int_{0}^{\infty} f(x-t) t^{\gamma-1} d t . \tag{3}
\end{equation*}
$$

Let $\boldsymbol{F}(x)=\int_{0}^{x} f(t) d t$, then we get by integration by parts

$$
\begin{equation*}
f_{\mathrm{r}}(x)=\frac{1-\gamma}{\Gamma(\gamma)} \int_{0}^{\infty}[F(x)-F(x-t)] t^{r-2} d t . \tag{4}
\end{equation*}
$$

Let us write

$$
\begin{aligned}
s_{n}^{*}\left(x, f_{\curlyvee}\right)-f_{r}(x) & =\frac{1}{\pi} \int_{0}^{\pi} D_{n}^{*}(u)\left[f_{\gamma}(x+u)+f_{r}(x-u)-2 f_{\curlyvee}(x)\right] d u \\
& =\frac{1}{\pi}\left[\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi}\right]=I+J .
\end{aligned}
$$

We shall begin to estimate I. By (4),

$$
\begin{aligned}
I= & \frac{1-\gamma}{\pi \Gamma(\gamma)} \int_{0}^{\pi / n} D_{n}^{*}(u) d u \int_{0}^{\infty}[\{F(x+u)-F(x+u-t)\} \\
& +\{F(x-u)-F(x-u-t)\}-2\{F(x)-F(x-t)\}] t^{r-2} d t \\
= & \frac{1-\gamma}{\pi \Gamma(\gamma)} \int_{0}^{\pi / n} d u\left(\int_{0}^{1 / n}+\int_{1 / n}^{\infty}\right) d t=I_{1}+I_{2} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\int_{0}^{\pi / n} D_{n}^{*}(u) d u \int_{0}^{1 / n} & {\left[\left\{F^{\prime}(x+u)-F(x+u-t)\right\}-\{\boldsymbol{F}(x)-F(x-t)\}\right] t^{r-2} d t } \\
& =\int_{0}^{\pi / n} D_{n}^{*}(u) d u \int_{0}^{1 / n} t^{r-2} d t \int_{0}^{t}[f(x+u-v)-f(x-v)] d v .
\end{aligned}
$$

By Theorem 1, $f(x+u-v)-f(x-v)=O\left(u^{\beta}\right)$, and then the last integral is of order $1 / n^{\beta+r}$. Hence $\left|I_{\mathrm{r}}\right| \leqq A / n^{\beta+r}$. Further

$$
\begin{aligned}
& \left|\int_{0}^{\pi / n} D_{n}^{*}(u) d u \int_{1 / n}^{\infty}[\{F(x+u)-F(x+u-t)\}-\{F(x)-F(x-t)\}] t^{r-2} d t\right| \\
& \leqq A n \int_{0}^{\pi / n} d u \int_{1 / n}^{\infty} \max |\{F(x+u)-F(x)\}-\{F(x+u-t)-F(x-t)\}| t^{r-2} d t
\end{aligned}
$$

$$
\leqq A n \int_{0}^{\pi / n} d u u \int_{1 / n}^{\infty} t^{\beta+\gamma-2} d t \leqq A / n^{\beta+\gamma}
$$

Thus we have $|I| \leqq A / n^{\beta+\gamma}$.
On the other hand, we write

$$
J=\int_{\pi / n}^{\pi} d u \int_{0}^{\infty} d t=\int_{\pi / n}^{\pi} d u\left(\int_{0}^{1 / n}+\int_{1 / n}^{\infty}\right) d t=J_{1}+J_{2} .
$$

Since we can suppose that n is odd,

$$
\begin{array}{r}
J_{1}=\int_{0}^{1 / n} t^{r-2} d t \int_{\pi / n}^{\pi}[\{F(x+u)-F(x+u-t)\}+\{F(x-u)-F(x-u-t)\} \tag{5}\\
-2\{F(x)-F(x-t)\}] D_{n}^{*}(u) d u \\
=\frac{1}{2} \int_{0}^{1 / n} t^{r-2} d t \sum_{k=1}^{(n-1) / 2} \int_{0}^{\pi / n}\left[\left\{\left(\frac{F(x+u+2 k \pi / n)}{\sin (u+2 k \pi / n) / 2}-\frac{F(x+u+(2 k-1) \pi / n)}{\sin (u+(2 k-1) \pi / n) / 2}\right)\right.\right. \\
\left.-\left(\frac{F(x+u-t+2 k \pi / n)}{\sin (u+2 k \pi / n) / 2}-\frac{F(x+u-t+(2 k-1) \pi / n)}{\sin (u+(2 k-1) \pi / n) / 2}\right)\right\} \\
\\
+\operatorname{similar} \text { terms }] \sin n u d u,
\end{array}
$$

where the term in the brackets [] is

$$
\begin{aligned}
& \{(F(x+u+2 k \pi / n)-F(x+u+(2 k-1) \pi / n)) / \sin (u+2 k \pi / n) / 2 \\
& +F(x+u+(2 k-1) \pi / n)(1 / \sin (u+2 k \pi / n) / 2-1 / \sin (u+(2 k-1) \pi / n) / 2) \\
& \quad+\operatorname{similar} \text { terms }\}+\operatorname{similar} \text { terms } \\
& =(f(x+u+2 k \pi / n+\theta t)-f(x+u+(2 k-1) \pi / n+\theta t)) t / \sin (u+2 k \pi / n) / 2 \\
& +(f(x+u+(2 k-1) \pi / n+\theta t)-f(x+\theta t)) \cdot O\left(\frac{t}{n} /\left(\frac{k}{n}\right)^{2}\right)+\text { similar terms }
\end{aligned}
$$

by the mean value theorem, where $0<\theta<1$. By the assumption and Theorem 1, we get ${ }^{1)}$

Finally, in order to estimate J_{2}, we write it in the form (5) where the range of integration with respect to t is replaced by ($1 / n$, $\infty)$. By the mean value theorem, the term in the brackets is

$$
\pi\{f(x+u+(2 k-\theta) \pi / n)-f(x+u+(2 k-\theta) \pi / n-t)\} / n \sin (u+2 k \pi / n) / 2
$$

$$
+(u+(2 k-1) \pi / n)\{f(x+\lambda(u+(2 k-1) \pi / n))-f(x+\lambda(2 k-1) \pi / n)-t\}
$$

$$
\cdot O\left(1 / n(u+2 k \pi / n)^{2}\right)
$$

1) $1 / p+1 / p^{\prime}=1$.

$$
\begin{aligned}
& \left|J_{1}\right| \leqq A \int_{0}^{1 / n} t^{r-1} d t \sum_{k=1}^{(n-1) / 2} \int_{-\pi / n}^{\pi / n} d u \\
& \{|f(x+u+2 k \pi / n+\theta t)-f(x+u+(2 k-1) \pi / n+\theta t)| /(u+2 k \pi / n) \\
& \left.+|f(x+u+(2 k-1) \pi / n+\theta t)-f(x+\theta t)| n / k^{2}\right\} \\
& \leqq A \int_{0}^{1 / n} t^{r-1} d t\left[\left(\int_{0}^{2 \pi}|f(v+\pi / n)-f(v)|^{p} d v\right)^{1 / p}\left(\int_{\pi / n}^{\pi} u^{-p^{\prime}} d u\right)^{1 / p^{\prime}}\right. \\
& \left.+\sum_{k=1}^{(n-1) / 2}\left(\frac{k}{n}\right)^{\beta} \frac{n}{k^{2}} \frac{1}{n}\right] \\
& \leqq \frac{A}{n^{r}}\left[\left(\frac{\pi}{n}\right)^{\alpha} n^{-1 / \rho}+\frac{1}{n^{\beta}}\right] \leqq A / n^{\beta+\tau} .
\end{aligned}
$$

where $0<\theta<1,0<\lambda<1$, and then

$$
\left|J_{2}\right| \leqq A \int_{1 / n}^{\infty} t^{\gamma-2} d t n^{-1} t^{\alpha} n^{1 / p} \leqq A / n^{\beta+r}
$$

Thus we have proved that $|J| \leqq A / n^{\beta+r}$. Combining this with the estimation of I, we get the required result.
3. Prof. T. Tsuchikura informed us the following proof of Theorem 4. This follows from Theorem 2 and

Theorem 7. Let $0 \leqq \alpha<1, \beta>0, \alpha+\beta<1$ and $p>1$. If $f(x)$ belongs to the Lip (α, p) class, then the β th integral $f_{\beta}(x)$ belongs to the Lip $(\alpha+\beta, p)$ class.

Proof. Let $F(x)=\int_{0}^{x} f(t) d t$. By (4),

$$
\begin{aligned}
\frac{\Gamma(\beta)}{1-\beta}\left\{f_{\beta}(x+h)-f_{\beta}(x)\right\}=\int_{0}^{\infty}[\{F(x+h) & -F(x+h-t)\} \\
& -\{\boldsymbol{F}(x)-F(x-t)\}] t^{\beta-2} d t .
\end{aligned}
$$

Hence, by the Minkowski inequality,

$$
\begin{aligned}
& \left(\int_{0}^{2 \pi}\left|f_{\beta}(x+h)-f_{\beta}(x)\right|^{p} d x\right)^{1 / p} \\
& \leqq A\left(\int_{0}^{2 \pi}\left|\int_{0}^{\infty}[\{F(x+h)-F(x+h-t)\}-\{\boldsymbol{F}(x)-F(x-t)\}] t^{\beta-2} d t\right| d x\right)^{i / p} \\
& =\int_{0}^{h}+\int_{n}^{\pi}+\int_{\pi}^{\infty}=P+Q+R
\end{aligned}
$$

say. By the maximal theorem we get

$$
\begin{aligned}
P & \leqq A \int_{0}^{h} t^{\beta-2}\left[\int_{0}^{2 \pi}\left|\int_{x-t}^{x}\{f(u+h)-f(u)\} d u\right|^{p} d x\right]^{1 / p} d t \\
& \leqq A \int_{0}^{h} t^{\beta}\left[\int_{0}^{2 \pi}|f(x+h)-f(x)|^{p} d x\right]^{1 / p} d t \leqq A \int_{0}^{h} t^{\beta-1} \cdot h^{\alpha} d t=A h^{\alpha+\beta}
\end{aligned}
$$

Further

$$
\begin{aligned}
Q & \leqq A \int_{h}^{\pi} t^{\beta-2}\left[\int_{0}^{2 \pi}\left|\int_{x}^{x+h}\{f(u)-f(u-t)\} d u\right| d x\right]^{1 / p} d t \\
& \leqq A h \int_{h}^{\pi} t^{\beta-2}\left[\int_{0}^{2 \pi}\left|\frac{1}{h} \int_{x}^{x+h}\{f(u)-f(u-t)\} d u\right|^{p} d x\right]^{1 / p} d t \\
& \leqq A h \int_{h}^{\pi} t^{\beta-2}\left[\int_{0}^{2 \pi}|f(x)-f(x-t)|^{p} d t\right]^{1 / p} d t \\
& \leqq A h \int_{h}^{\pi} t^{\beta-2} \cdot t^{\alpha} d t \leqq A h\left(h^{\alpha+\beta-1}+O(1)\right)=O\left(h^{\alpha+\beta}\right)
\end{aligned}
$$

and similarly $R \leqq A h \int_{\pi}^{\infty} t^{\beta-2} O(1) d t=O(h)$. Thus we obtain

$$
\left(\int_{0}^{2 \pi}\left|f_{\beta}(x+h)-f_{\beta}(x)\right|^{p} d x\right)^{1 / p}=O\left(h^{\alpha+\beta}\right)
$$

which is the required.
4. Proof of Theorem 6. We have

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{0}^{\pi} D_{n}^{*}(u) d u \cdot \frac{1}{\Gamma(\alpha)} \int_{0}^{\pi}[f(x+u-t)+f(x-u-t)-2 f(x-t)] t^{*-1} d t \\
& =\frac{1}{\pi \Gamma(\alpha)} \int_{0}^{\pi} D_{n}^{*}(u) d u\left(\int_{0}^{1 / n}+\int_{1 / n}^{\infty}\right) \varphi_{x-t}(u) t^{x-1} d t=\frac{1}{\pi \Gamma(\alpha)}(I+J),
\end{aligned}
$$

say, where $\varphi_{y}(u)=f(y+u)+f(y-u)-2 f(y)$. By the M. Riesz theorem we have

$$
\begin{aligned}
I & =\int_{0}^{1 / n} t^{\alpha-1} d t \int_{0}^{\pi} \varphi_{x-t}(u) D_{n}^{*}(u) d u=\pi \int_{0}^{1 / n} t^{\alpha-1} s_{n}(x-t) d t \\
|I| & \leqq A\left(\int_{0}^{1 / n} t^{(\alpha-1) p^{\prime}} d t\right)^{1 / p^{\prime}}\left(\int_{0}^{2 \pi}\left|s_{n}(t)\right|^{p} d t\right)^{1 / p} \\
& \leqq A\left(\int_{0}^{1 / n} t^{(\alpha-1) p^{\prime}} d t\right)^{1 / p^{\prime}}\left(\int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{1 / p} \leqq A / n^{\alpha-1 / p}
\end{aligned}
$$

Further, putting $F(t)=\int_{0}^{t} f(u) d u$,

$$
\begin{gathered}
J=\int_{0}^{\pi} D_{n}^{*}(u) d u \int_{1 / n}^{\infty}[f(x+u-t)+f(x-u-t)-2 f(x-t)] t^{\alpha-1} d t \\
=\int_{0}^{\pi} D_{n}^{*}(u) d u\left\{\left[t^{\alpha-1}(F(x+u-t)+F(x-u-t)-2 F(x-t))\right]_{1 / n}^{\infty}\right. \\
\left.\quad+(1-\alpha) \int_{1 / n}^{\infty} t^{\alpha-2}(F(x+u-t)+F(x-u-t)-2 F(x-t)) d t\right\} \\
=(1-\alpha) \int_{0}^{\pi} D_{n}^{*}(u) d u \int_{1 / n}^{\infty} t^{\alpha-2}[\{F(x+u-t)-F(x-u-1 / n)\} \\
\quad+\{F(x-u-t)-F(x-u-1 / n)\}-2\{F(x-t)-F(x-1 / n)\}] d t \\
= \\
=(1-\alpha)\left(\int_{0}^{\pi / n} d u+\int_{\pi / n}^{\pi} d u\right)=J_{1}+J_{2} .
\end{gathered}
$$

Now

$$
J_{1}=(1-\alpha) \int_{0}^{\pi / n} D_{n}^{*}(u) d u \int_{1 / n}^{\infty} t^{\alpha-2} d t \int_{0}^{u}(f(x-t+v)+\text { similar terms }) d v
$$

and then

$$
\begin{aligned}
\left|J_{1}\right| \leqq & A n \int_{0}^{\pi / n} d u \int_{1 / n}^{\infty} t^{\alpha-2} d t \\
& \cdot\left[\left(\int_{0}^{u}|f(x-t-v)|^{p} d v\right)^{1 / p}+\text { similar terms }\right]\left(\int_{0}^{u} d v\right)^{1 / p^{\prime}} \\
\leqq & A n \int_{0}^{\pi / n} u^{1 / p^{\prime}} d u \int_{1 / n}^{\infty} t^{\alpha-2} d t \leqq A / n^{\alpha-1 / p} .
\end{aligned}
$$

It remains now to estimate J_{2}.

$$
\begin{aligned}
& \quad J_{2}=\int_{1 / n}^{\infty} t^{x-2} d t \int_{0}^{\pi / n} d u \cdot \sum_{k=1}^{(n-1) / 2} \\
& {[\{(F(x+u+2 k \pi / n-t)-F(x+u+(2 k-1) \pi / n-t)) / \sin (u+(2 k-1) \pi / n) / 2} \\
& +\quad+\operatorname{similar} \text { terms }\} \\
& +\left\{(F(x+u+(2 k-1) \pi / n-t)-F(x+u+(2 k-2) \pi / n-t)) \cdot O\left(n / k^{2}\right)\right. \\
& + \text { similar terms }\}] .
\end{aligned}
$$

The terms in the brackets [] are less than, in absolute value, the sum of the terms of the type

$$
n|F(y+k \pi / n)-F(y+(k-1) \pi / n)| / k
$$

and easily estimatable terms. Now

$$
\begin{aligned}
& \sum_{k=1}^{n}|F(y+k \pi / n)-F(y+(k-1) \pi / n)| / k \\
\leqq & A\left(\sum_{k=1}^{n}|F(y+k \pi / n)-F(y+(k-1) \pi / n)|^{p} n^{p-1}\right)^{1 / p}\left(\sum_{k=1}^{n} k^{-p^{\prime}}\right)^{1 / p^{\prime}} \cdot n^{1 / p-1}
\end{aligned}
$$

where the first term is bounded by Young's theorem, and then

$$
\left|J_{2}\right| \leqq \frac{A}{n^{-1 / p}} \frac{1}{n} \int_{1 / n}^{\infty} t^{\alpha-2} d t \leqq A / n^{\alpha-1 / p}
$$

Thus we have proved the theorem.

References

[1] G. H. Hardy and J. E. Littlewood: Some new properties of Fourier constants, Math. Ann., 97 (1926).
[2] S. Izumi: Notes on Fourier analysis (XXI), Jour. London Math. Soc., 25 (1950); Some trigonometrical series. XV, Proc. Japan Acad., 31 (1955).
[3] G. H. Hardy and J. E. Littlewood: Some properties of fractional integrals I, Math. Zeits., 27 (1928).
[4] A. Zygmund: Trigonometrical series, Warszawa (1935).
[5] M. Satô; Uniform convergence of Fourier series. I-V, Proc. Japan Acad., 3031 (1954-1955); Convergence of Fourier series, ibid., 31 (1955).

