10 [Vol. 32,

3. Closed Mappings and Metric Spaces

By Kiiti MORITA and Sitiro HANAI (Comm. by K. Kunugi, M.J.A., Jan. 12, 1956)

A mapping of a topological space X onto another topological space Y is said to be closed if the image of every closed subset of X is closed in Y. Concerning the problem: "Under what condition is the image of a metric space under a closed continuous mapping metrizable?", several interesting results have been obtained recently by G. T. Whyburn [6], A. V. Martin [3], and V. K. Balachandran [1]. In the present note, we shall give an answer to this problem by proving that the image space Y of a metric space X under a closed continuous mapping f is metrizable if and only if the boundary $\mathfrak{B}f^{-1}(y)$ of the inverse image $f^{-1}(y)$ is compact for every point y of Y. A problem raised by Balachandran [1] will also be solved.

1. We shall prove

Lemma 1. Let f be a closed continuous mapping of a normal T_1 -space X onto a topological space Y. If Y satisfies the first countability axiom, then $\mathfrak{B}f^{-1}(y)$ is countably compact for every point y of Y.

Proof. Let y be any point of Y. By the first countability axiom, there exists a countable collection $\{V_i | i=1,2,\cdots\}$ of open neighborhoods of y such that for any open neighborhood U there can be found some V_i with $V_i \subset U$.

Suppose that $\mathfrak{B}f^{-1}(y)$ is not countably compact. Then there exist a countable number of points x_i , $i=1,2,\cdots$ of $\mathfrak{B}f^{-1}(y)$ such that $\{x_i\}$ has no limit point. Then by the normality of X we can find a discrete collection $\{G_n\}$ of open sets of X such that

$$x_i \in G_i$$
 for $i=1,2,\cdots$; $G_i \cap G_j = 0$ for $i \neq j$

and $\{G_n\}$ is locally finite.

Since each point x_i belongs to the boundary $\mathfrak{B}f^{-1}(y)$ of $f^{-1}(y)$, there exists a point x_i' of X such that

$$x_i' \notin f^{-1}(y), \quad x_i' \in G_i \cap f^{-1}(V_i).$$

Then $\{x_i' | i=1,2,\cdots\}$ is locally finite in X and hence the set C consisting of all points $x_i', i=1,2,\cdots$ is closed. Therefore if we put H=Y-f(C), H is an open set of Y. Since $x_i' \notin f^{-1}(y)$, we have $y \in H$. Hence there exists some V_i such that $V_i \subset H$. This implies that we have $f(x_i') \notin V_i$ for some i. On the other hand we have chosen the point x_i' so that $x_i' \in f^{-1}(V_i)$. This is a contradiction. Thus Lemma 1 is proved.

2. We shall now establish the following theorem.

Theorem 1. Let f be a closed continuous mapping of a metric space X onto a topological space Y. In order that Y be metrizable it is necessary and sufficient that the boundary $\mathfrak{B}f^{-1}(y)$ of the inverse image $f^{-1}(y)$ be compact for every point y of Y.

Proof. Since the necessity is an immediate consequence of Lemma 1, we have only to prove the sufficiency.

(i) Let $\mathfrak{B}f^{-1}(y)$ be compact for each point y of Y. We shall define an open set L(y) as follows:

$$L(y)\!=\!\Bigl\{ egin{array}{ll} ext{the interior of } f^{-1}\!\left(y
ight)\!, & ext{if } \Im f^{-1}\!\left(y
ight)\! =\! 0 ext{,} \ f^{-1}\!\left(y
ight)\! =\! 0 ext{,} \ & ext{if } \Im f^{-1}\!\left(y
ight)\! =\! 0 ext{,} \ \end{array}$$

where p_y is an arbitrary point of $f^{-1}(y)$. We put

$$X_0=X-L$$
, $L=\smile\{L(y)\mid y\in Y\}$.

Then X_0 is a closed subset of X. If we denote by φ the inclusion map of X_0 into X (that is, $\varphi(x)=x$ for $x \in X_0$), then $g=f\varphi$ is a closed continuous mapping of X_0 onto Y such that

$$g^{-1}(y) = \left\{egin{array}{ll} \mathfrak{B}f^{-1}(y), & ext{if } \mathfrak{B}f^{-1}(y)
eq 0, \ p_y, & ext{if } \mathfrak{B}f^{-1}(y) = 0. \end{array}
ight.$$

Hence $g^{-1}(y)$ is compact for every point y of Y.

(ii) By (i) we may and shall assume that f is a closed continuous mapping of a metric space X onto Y such that $f^{-1}(y)$ is compact for every point y of Y. Y is clearly a T_1 -space.

Let \mathfrak{M}_i be a locally finite closed covering of X which consists of sets of diameter <1/i. Let us put $\mathfrak{N}_i=f(\mathfrak{M}_i)=\{f(M)\mid M\in\mathfrak{M}_i\}$. Since for each point y of Y $f^{-1}(y)$ is compact, there exists an open set G containing $f^{-1}(y)$ such that G intersects only finitely many elements of \mathfrak{M}_i . If we put H=Y-f(X-G), we have $y\in H$, $f^{-1}(H)$ $\subset G$, and hence H intersects only finitely many elements of \mathfrak{N}_i . This shows that \mathfrak{N}_i is a locally finite closed covering of Y.

Let V be any open neighborhood of y. Then $f^{-1}(y) \subset f^{-1}(V)$. Since $f^{-1}(y)$ is compact, the distance between $f^{-1}(y)$ and $X - f^{-1}(V)$ is positive and hence we have $S(f^{-1}(y), \mathfrak{M}_i) \subset f^{-1}(V)$ for some i, where $S(A, \mathfrak{M}_i)$ means the union of the sets of \mathfrak{M}_i which intersect A. Therefore we have $S(y, \mathfrak{R}_i) \subset V$ for some i.

In the previous paper [5] the following metrizability condition was obtained:

In order that a T_i -space be metrizable it is necessary and sufficient that there exists a countable collection $\{\Re_i \mid i=1, 2, \cdots\}$ of locally finite closed coverings of the space such that for any neighborhood U of any point x there exists some \Re_i satisfying the condition $S(x, \Re_i) \subset U$.

Therefore Y is metrizable. This completes our proof.

3. The following theorem in the previous paper [2] is a corollary to Theorem 1; indeed the part (ii) of the above proof of Theorem 1 is nothing but a proof of this theorem.

Theorem 2. Let f be a closed continuous mapping of a metric space X onto a topological space Y. If the inverse image $f^{-1}(y)$ is compact for every point y of Y, then Y is metrizable.

We shall give another proof of this theorem by virtue of the following theorem.

Theorem 3. Let f be a closed continuous mapping of a T_1 -space X onto a topological space Y. Then if X is normal or collectionwise normal, so also is Y. Furthermore, in case $\mathfrak{B}f^{-1}(y)$ is compact for every point y of Y, if X is paracompact and normal, so also is Y.

Proof. (i) Let $\{F_a\}$ be a discrete collection of closed sets in Y. Then $\{f^{-1}(F_a)\}$ is clearly a discrete collection of closed sets in X. Let X be collectionwise normal; then there exists a system of disjoint open sets G_a of X such that $f^{-1}(F_a) \subset G_a$ for each α . If we put $H_a = Y - f(X - G_a)$, we have $f^{-1}(F_a) \subset f^{-1}(H_a) \subset G_a$ and hence $H_a \cap H_{\beta} = 0$ for $\alpha \neq \beta$. This proves that Y is collectionwise normal. The proof for the case of normality is now obvious from the above argument.

(ii) Let X be paracompact and normal, and let $\mathfrak{B}f^{-1}(y)$ be compact for every point y of Y. As in the proof of Theorem 1 we may assume that $f^{-1}(y)$ is compact for each point y.

Let \mathfrak{G} be any open covering of Y. Then $\mathfrak{H} = \{f^{-1}(G) \mid G \in \mathfrak{G}\}$ is an open covering of X, and there exists a locally finite closed covering \mathfrak{M} of X which is a refinement of \mathfrak{H} . If we put $\mathfrak{N} = \{f(M) \mid M \in \mathfrak{M}\}$, \mathfrak{N} is a locally finite closed covering of Y and is a refinement of \mathfrak{G} , as is shown in (ii) of the proof of Theorem 1. Since Y is normal, by a theorem of Y. Michael Y is paracompact.

Proof of Theorem 2. Since X is paracompact and normal, Y is paracompact and normal by Theorem 3, so that Y is fully normal. Let $O^{(n)}(x)$ $(n=1,2,\cdots)$ be an open sphere with the center x and the radius 1/n for each point x of X. For any point y of Y, we have $\bigcup_{x\in f^{-1}(y)} O^{(n)}(x) \supset f^{-1}(y)$. Let $G^{(n)}(y) = Y - f(X - \bigcup_{x\in f^{-1}(y)} O^{(n)}(x))$; then

 $G^{(n)}(y)$ is an open set containing y since f is closed and continuous. Let $\mathfrak{G}_n = \{G^{(n)}(y) \mid y \in Y\}$ $(n=1,2,\cdots)$; then each \mathfrak{G}_n is a normal covering of Y, since Y is fully normal. For the proof of the metrizability of Y, we have only to prove that for all points $y \in Y$, $\{S(y,\mathfrak{G}_n) \mid n=1,2,\cdots\}$ is a basis for neighborhoods of y.

Let y be any point of Y and U any open neighborhood of y.

¹⁾ In [2] this condition was left out in the statement of the theorem, and the proof there contains an error, but it can be corrected.

Then, since $f^{-1}(y)$ is compact, $\rho[f^{-1}(y), X-f^{-1}(U)]=d>0$ where ρ is the metric for X. Let m be a positive integer such that 1/m < d/2 and let l be a positive integer such that $1/l < \rho[f^{-1}(y), X-f^{-1}(G^{(m)}(y))]$, l>m. Then $y \in G^{(l)}(y')$ implies $y' \in G^{(m)}(y)$.

In fact, suppose on the contrary that $y' \notin G^{(m)}(y)$; then $f^{-1}(y') \subset X - f^{-1}(G^{(m)}(y))$. Hence

 $(*) \qquad 1/l < \rho [f^{-1}(y), X - f^{-1}(G^{(m)}(y))] \leqq \rho [f^{-1}(y), f^{-1}(y')].$ Since $y \in G^{(l)}(y'), f^{-1}(y) \subset f^{-1}(G^{(l)}(y')) \subset \bigcup_{x \in f^{-1}(y')} O^{(l)}(x)$. Hence for any point $x \in f^{-1}(y)$, there exists a point x' such that $x \in O^{(l)}(x')$ and $x' \in f^{-1}(y')$. Therefore $\rho [f^{-1}(y), f^{-1}(y')] \leqq 1/l$, contrary to (*).

We shall prove that $S(y, \mathfrak{G}_l) \subset U$. Let y'' be any point of $S(y, \mathfrak{G}_l)$; then there exists $G^{(t)}(y')$ with some y' such that $y'' \in G^{(t)}(y')$ and $y \in G^{(t)}(y')$. Then $y' \in G^{(m)}(y)$. Hence for any point $x \in f^{-1}(y'')$, there exist points x'' and x''' such that $x \in O^{(t)}(x'')$, $x'' \in f^{-1}(y')$, $x'' \in O^{(m)}(x''')$ and $x''' \in f^{-1}(y)$. Then $\rho(x, x''') \leq 1/l + 1/m < 2/m < d$. Hence $x \in f^{-1}(U)$, so that $y'' \in U$. Therefore $\{S(y, \mathfrak{G}_n) \mid n = 1, 2, \cdots\}$ is a basis for neighborhoods of y. This completes our proof.

4. By combining Theorem 1 with Lemma 1 we obtain at once the following theorem, which was essentially proved by G. T. Whyburn [6] for the case where X is separable.

Theorem 4. Let f be a closed continuous mapping of a metric space X onto a topological space Y. If Y satisfies the first countability axiom, then Y is metrizable.

In case A is a closed subset of a metric space X, the space obtained from X by contracting A to a point is the image of X under the natural mapping which is a closed mapping. Therefore the image of a metric space under a closed continuous mapping is not always metrizable.

Thus a problem raised by Balachandran [1] is answered by Theorems 1 and 4.

5. As is easily shown (cf. [1, Lemma 1]), if a T_1 -space X satisfies the first countability axiom, so also does the image of X under an open continuous mapping. Hence we obtain the following theorem of Balachandran [1] from Theorem 4.

Theorem 5. The image of a metric space under any closed, open, continuous mapping is metrizable.

6. On the basis of Theorem 1 we have

Theorem 6. Let f be a closed continuous mapping of a metric space X onto another metric space Y. If X is separable or locally compact, so also is Y.

Proof. By Theorem 1, $\mathfrak{B}f^{-1}(y)$ is compact for every point y of Y. By the closed continuous mapping g of X_0 onto Y which

was defined in the part (i) of the proof of Theorem 1, our theorem for these two properties is reduced to theorems in the previous paper [2]; of course the proof in [2] can be modified easily so as to yield a direct proof for our case.

References

- [1] V. K. Balachandran: A mapping theorem for metric spaces, Duke Math. Jour., 22, 461-464 (1955).
- [2] S. Hanai: On closed mappings, Proc. Japan Acad., 30, 285-288 (1954).
- [3] A. V. Martin: Decompositions and quasi-compact mappings, Duke Math. Jour., 21, 463–469 (1954).
- [4] E. Michael: A note on paracompact spaces, Bull. Amer. Math. Soc., 4, 831–838 (1953).
- [5] K. Morita: A condition for the metrizability of topological spaces and for n-dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku, Section A, 5, No. 114, 33–36 (1955).
- [6] G. T. Whyburn: Open and closed mappings, Duke Math. Jour., 17, 69-74 (1950).