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3. Closed Mappings and Metric Spaces

By Kiiti MORITA and Sitiro HANAI
(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1956)

A mapping of a topological space X onto another topological
space Y is said to be closed if the image of every closed subset of
X is closed in Y. Concerning the problem: ¢ Under what condition
is the image of a metric space under a closed continuous mapping
metrizable?’”’, several interesting results have been obtained recently
by G. T. Whyburn [6], A. V. Martin [8], and V. K. Balachandran
[1]. In the present note, we shall give an answer to this problem
by proving that the image space Y of a metric space X under a
elosed continuous mapping f is metrizable if and only if the boundary
Bf-(y) of the inverse image f~'(y) is compact for every point y of
Y. A problem raised by Balachandran [1] will also be solved.

1. We shall prove

Lemma 1. Let f be a closed continuous mapping of a normal
T-space X onto a topological space Y. If Y satisfies the first count-
ability axiom, then Bf*(y) is countably compact for every point y
of Y.

Proof. Let y be any point of Y. By the first countability
axiom, there exists a countable collection {V;|¢=1,2,---} of open
neighborhoods of y such that for any open neighborhood U there
can be found some V, with V,CU.

Suppose that Bf-'(y) is not countably compact. Then there
exist a countable number of points z,, t=1,2,--- of Bf *(y) such that
{x,} has no limit point. Then by the normality of X we ecan find
a discrete collection {G,} of open sets of X such that

2, €G, for ¢=1,2,---; G,NG;=0 for i=jJ
and {G,} is locally finite.

Since each point x; belongs to the boundary Bf '(y) of f~'(¥),
there exists a point «, of X such that

wi & f (), @ieGNf (V).

Then {z;|¢=1,2,---} is locally finite in X and hence the set C
consisting of all points «}, t=1,2,--- is closed. Therefore if we put
H=Y—f(C), H is an open set of Y. Since «¢ f'(y), we have
y e H. Hence there exists some V, such that V,C H. This implies
that we have f(x;)¢V, for some 7. On the other hand we have
chosen the point x; so that «;e f~'(V,). This is a contradiction.
Thus Lemma 1 is proved.
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2. We shall now establish the following theorem.

Theorem 1. Let f be a closed continuous mapping of a metric
space X onto a topological space Y. In order that Y be metrizable
it 18 necessary and sufficient that the boundary Bf~'(y) of the inverse
tmage f~'(y) be compact for every point y of Y.

Proof. Since the necessity is an immediate consequence of
Lemma 1, we have only to prove the sufficiency.

(i) Let Bf '(y) be compact for each point y of Y. We shall
define an open set L(y) as follows:

L(y):{the interior of f~'(y), if Bf(y)0,
S ) — D0, it Bf-'(y)=0,
where p, is an arbitrary point of f~'(y). We put

Xo=X—L, L=< {Ly)|lyeY}.
Then X, is a closed subset of X. If we denote by ¢ the inclusion
map of X, into X (that is, @)=« for xeX,), then g=fp is a
closed continuous mapping of X, onto Y such that

= 20 20,
Dy if %f—l(?/) =0.
Hence ¢g~'(y) is compact for every point y of Y.

(ii) By (i) we may and shall assume that f is a closed con-
tinuous mapping of a metric space X onto Y such that f~'(y) is
compact for every point ¥ of Y. Y is clearly a T,-space.

Let M, be a locally finite closed covering of X which consists
of sets of diameter <1/i. Let us put N,=fM)={f(M)|MeM,}.
Since for each point ¥ of Y f~!(y) is compact, there exists an open
set G containing f~'(y) such that G intersects only finitely many
elements of M;. If we put H=Y—f(X—G), we have ye H, f'(H)
CG, and hence H intersects only finitely many elements of M.
This shows that N, is a loecally finite closed covering of Y.

Let V be any open neighborhood of y. Then f~'(y)Cf (V).
Since f~!(y) is compact, the distance between f~'(y) and X—f*(V)
is positive and hence we have S(f~'(y), M) f (V) for some ¢, where
S(A,M,) means the union of the sets of M, which intersect A.
Therefore we have S(y,%,)CV for some <.

In the previous paper [5] the following metrizability condition
was obtained:

In order that a T-space be metrizable it is necessary and suf-
ficient that there exists a countable collection {®;|¢=1,2,---} of
locally finite closed coverings of the space such that for any neigh-
borhood U of any point = there exists some R, satisfying the con-
dition S(z, &)CU.

Therefore Y is metrizable. This completes our proof.
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3. The following theorem in the previous paper [2] is a corol-
lary to Theorem 1; indeed the part (ii) of the above proof of Theorem 1
is nothing but a proof of this theorem.

Theorem 2. Let f be a closed continuous mapping of a metric
space X onto a topological space Y. If the inverse tmage f '(y) s
compact for every point y of Y,V then Y s metrizable.

We shall give another proof of this theorem by virtue of the
following theorem.

Theorem 3. Let f be a closed continuous mapping of o T-space
X onto a topological space Y. Then if X is normal or collectionwise
normal, so also is Y. Furthermore, in case Bf~(y) is compact for
every point y of Y, if X is paracompact and normal, so also is Y.

Proof. (i) Let {F,} be a discrete collection of closed sets
in Y. Then {f~'(F,)} is clearly a discrete collection of closed sets
in X. Let X be collectionwise normal; then there exists a system
of disjoint open sets G, of X such that f (¥, CG, for each a.
If we put H,=Y—f(X-G,), we have f'(FyCf Y(H)CZG, and
hence H,(\H;=0 for « 8. This proves that Y is collectionwise
normal. The proof for the case of nmormality is now obvious from
the above argument.

(ii) Let X be paracompact and normal, and let Bf '(y) be
compact for every point ¥ of Y. As in the proof of Theorem 1
we may assume that f~'(y) is compact for each point y.

Let G be any open covering of Y. Then $={f"(G)|G ¢ G} is
an open covering of X, and there exists a locally finite closed
covering M of X which is a refinement of . If we put N={f(M)]|
MeM}, N is a locally finite closed covering of Y and is a refine-
ment of &, as is shown in (ii) of the proof of Theorem 1. Since
Y is normal, by a theorem of E. Michael [4] Y is paracompact.

Proof of Theorem 2. Since X is paracompact and normal, Y
is paracompact and normal by Theorem 8, so that Y is fully normal.
Let O™(x) (n=1,2,-+-) be an open sphere with the center x and
the radius 1/n for each point x of X. For any point y of Y, we
have (J O™(@)Df'(y). Let G™)=Y—Ff(X— U O“(x)); then

P <)) zer™
G™(y) is an open set containing y since f is closed and continuous.
Let 8,={G™W)|ye Y} (n=1,2,---); then each &, is a normal cover-
ing of Y, since Y is fully normal. For the proof of the metrizability
of Y, we have only to prove that for all points ye Y, {S(y, G,)|
n=1,2,---} is a basis for neighborhoods of ¥.

Let y be any point of ¥ and U any open neighborhood of y.

1) In [2] this condition was left out in the statement of the theorem, and the
proof there contains an error, but it can be corrected.
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Then, since f~(y) is compact, p[f (), X—f (U)]=d>0 where p
is the metric for X. Let m be a positive integer such that 1/m<d/2
and let ! be a positive integer such that 1/l <p[f (%), X—f(G™(%))],
{>m. Then ye G®(y’) implies ¥’ ¢ G™(y).

In fact, suppose on the contrary that ¥ ¢ G™(y); then f'(y)
X—f"(G“(y)). Hence

() Ul<p[f~'@), X—f(G™W)]=plf W), f )]

Since y € GOy, fF W) Cf UG C UIO(“(x). Hence for any point
zer W

x € f~'(y), there exists a point «’ such that x ¢ O®(z’) and ' ¢ £~'(¥').

Therefore p[f~'(y), f~'(y)] < 1/l, contrary to ().

We shall prove that S(y, ) U. Let y”’ be any point of S(y,
,); then there exists G®(y’) with some ¥ such that ¥’ e G®(y")
and y € G¥). Then ¥ € G™(y). Hence for any point e f'(y”),
there exist points 2 and «’” such that ze O®(”), z ¢ f'(y),
2 e Oy and «'" e f~'(y). Then plx,z") < 1l+1/m<2/m<d.
Hence z ¢ f'(U), so that y” ¢ U. Therefore {S(¥, ®,)|n=1,2,---}
is a basis for neighborhoods of y. This completes our proof.

4. By combining Theorem 1 with Lemma 1 we obtain at once
the following theorem, which was essentially proved by G. T.
Whyburn [6] for the case where X is separable.

Theorem 4. Let f be a closed continuous mapping of a metric
space X onto a topological space Y. If Y satisfies the first countability
axiom, then Y is metrizable.

In case A is a closed subset of a metric space X, the space
obtained from X by contracting A to a point is the image of X
under the natural mapping which is a closed mapping. Therefore
the image of a metric space under a closed continuous mapping is
not always metrizable.

Thus a problem raised by Balachandran [1] is answered by
Theorems 1 and 4.

5. As is easily shown (ef. [1, Lemma 17), if a 7T,-space X
satisfies the first countability axiom, so also does the image of X
under an open continuous mapping. Hence we obtain the following
theorem of Balachandran [1] from Theorem 4.

Theorem 5. The image of a metric space under any closed, open,
continuous mapping is metrizable.

6. On the basis of Theorem 1 we have

Theorem 6. Let f be a closed continuous mapping of o metric
space X onto another metric space Y. If X is separable or locally
compact, so also is Y.

Proof. By Theorem 1, Bf !(y) is compact for every point y
of Y. By the closed continuous mapping ¢ of X, onto Y which
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was defined in the part (i) of the proof of Theorem 1, our theorem
for these two properties is reduced to theorems in the previous
paper [2]; of course the proof in [2] can be modified easily so as
to yield a direct proof for our case.
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