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27. On the Property of Lebesgue in Uniform Spaces. VI

By Kiyoshi IskK
Kobe University

(Comm. by K. KuNuaI, ..., Feb. 13, 1956)

Let S be a topological space. A covering of S is a family of
open sets whose union is S. A covering is called .finite, if it corn
sists of a finite family.

Let us consider a separated uniform space S with a filter of
surroundings (R). A covering of S is said to have the Lebesgue
propery if there is a surrounding V in (R) such that, for each point
x of S, we can find an open set 0 of satisfying V(x)O.

We say that a separated uniform space has the fini$e Lebesgue
proper$y if any finite covering has the Lebesgue property. If any
covering of S has the Lebesgue property, the space S is said to
have the Lebesgue property. Such a space was studied by K. Iski
[.4 and S. Kasahara [5. S. Kasahara (5j, p. 129) has proved tbt
every uniform space having the Lebesgue propergy is complete. On
the other hand, the present author (4, V, p. 619) has shown that
the finite Lebesgue property does not imply the Lebesgue property
and the existence of a non-complete uniform space having the finite
Lebesgue property.

In this Note, we shall prove the following
Theorem 1. If the completion of a uniform space hving finite

Lebesgue property is normal, it has the finite Lebesgue property.
As easily seen, the converse of Theorem 1 is not true. There

are non-normal complete uniform spaces (J. Dieudonn [2_).
To prove this suppose hat S is Che completion of a uniform

space S having the finite Lebesgue property. According to a theorem
of my Note ([4, IV, p. 524), it is sufficient to prove he following
proposition.

Every bounded continuous function on S is uniformly continuous.

Let f(x) be a continuous function on S, then the restricted
function f(xIS) on S is uniformly con/inuous. Therefore, f(xlS) is

uniform continuously extended on S and it coincides with f(x). Thus

f(x) is uniformly continuous, and S has the finite Lebesgue property.
Under the assumption of Theorem 1, we shall consider the rela-

tion between the dimension of S and its completion S. There are
some definitions of dimension for a topological space. However,
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E. Hemmingsen [ 3 proved that some of these definitions are equivalent
for normal space. Therefore, we shall use Lebesgue’s covering defi-
nition by open sets. The order of a covering , is the maximum
number n such that there are n+l sets of with non-empty inter-
section. A covering is called a refinement of a covering I if to
each member U of , there is a member V of I such that UcV.
By the dimension (by Lebesgue) of a space S, we shall mean the
minimum number n such that, for any finite covering of S, there
is a finite covering ’ of order n and i is a refinement of . By
dim S, we shall denote the dimension of S.

We turn now to prove the following

Theorem 2. If the completion S of a uniform space S having

the finite Lebesgue property is normal, then dim S-dim S.
To prove Theorem 2, we shall show
Lemma. Any uniform space S having the finite Lebesgue prop-

erty is combinatorially imbedded in the completion S in the strong
sense.

The notion stated in the conclusion is due to E. (ech and J.
Novak [1].

Proof. By a theorem o my NoCe ([4, III), S is normal, there-
ore, regular. Let F1, F: be closed sets in S. Then we prove

FF--FF:, where the closure akes in S, and his shows that

S is combinatorially imbedded in S in the strong sense. It is clear

that F.-.,FFI,--,F. Let x F F-F F, len, by the regularity

of S, we can take a neighbourhood G of x in S such that G F, F.--0.

Let G-G.",F, G--G.-.,F, then x e GG and G and G are disjoint
and closed in S. By the normality of S, there is a bounded continuous
function f on Ssuch that f is0 on G, andf is 1 on G:. By the
assumption of S, f is uniformly continuous and therefore f is co)_-

tinuously extended on S. This implies G,’,G:---O, which contradicts

To prove Theorem 2, we shall prove the following theorem which
is a generalisation of Theorem 2.

Theorem 3. Let S, S be normal spaces. If S--S and S is
combinatoriully imbedded in S: in the strong sense, then dim S-dim

A special case of Theorem 3 has been proved by M. Kattov
[6. We shall prove Theorem 3 by using a similar method.
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Proof. Let dim S._n, and = [G, ..., G,.} a finite covering of
S. is shrinkable., by the normality of S. Let a covering

’- [H,-.., H} of S such that HG,(i-1, 2,..., m), and 0,=

S-SLH, then, since S is combinatorially imbedded in S in the

strong sense, 0,=S. Hence the covering [0,} has a refinement

"= [U:} of order n. The covering [US} of S is a refinement
of and order n.

Next suppose dim Sn. Let - [G,..., G} be a covering of
S. By the normality of , is shrinkable, and let ’-[H,} be a

covering of S such that H,G, (i-1, 2,.-., m). Then we can find
a covering "= [0} of S of order n, and to each 0,, there is an
open set H such that 0H. Let U-S-S--LO, then we have

U U S- -O-,
i=l i=t

by our assump%ion. For some j, Q 0-0 implies Q U-0, and ths
shows that the order of the covering {0} is not greaer han n. If

0<H, hen UcHCG, and the covering {U} of S is a refinement
of . This completes the proof.

References

[1] E. ech and J. Novak" On regular and combinatorial imbedding, Casopis pest.
mat. fys., 72, 7-16 (1947).

[23 J. Dieudonn4: Sur les espaces uniformes complets, Ann. de l’c. Norm. Sup.,
$6, 277-291 (1939).

[3] E. Hemmingsen: Some theorems in dimension theory for normal Hausdorff
spaces, Duke Math. Jour., 13, 495-504 (1946).

[4J K. Is4ki" On the property of Lebesgue in uniform spaces. I-V, Proc. Japan
Acad., 31, 220-221, 270-271, 441-442, 524-525, 618-619 (1955).

[5] S. Kasahara: On the Lebesgue property in uniform spaces, Math. Japonicae, 3,
127-1a2 (1955).

[6] M. Kattov: A theorem on the Lebesgue dimension, Casopis pest. mat. fys., 7,
79-87 (1950).


