27. On the Property of Lebesgue in Uniform Spaces. VI

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., Feb. 13, 1956)

Let S be a topological space. A covering of S is a family of open sets whose union is S. A covering is called *finite*, if it consists of a finite family.

Let us consider a separated uniform space S with a filter of surroundings \mathfrak{S} . A covering \mathfrak{F} of S is said to have the *Lebesgue* property if there is a surrounding V in \mathfrak{S} such that, for each point x of S, we can find an open set 0 of \mathfrak{F} satisfying $V(x) \subset 0$.

We say that a separated uniform space has the *finite Lebesgue* property if any finite covering has the Lebesgue property. If any covering of S has the Lebesgue property, the space S is said to have the Lebesgue property. Such a space was studied by K. Iséki [4] and S. Kasahara [5]. S. Kasahara ([5], p. 129) has proved that every uniform space having the Lebesgue property is complete. On the other hand, the present author ([4], V, p. 619) has shown that the finite Lebesgue property does not imply the Lebesgue property and the existence of a non-complete uniform space having the finite Lebesgue property.

In this Note, we shall prove the following

Theorem 1. If the completion of a uniform space having finite Lebesgue property is normal, it has the finite Lebesgue property.

As easily seen, the converse of Theorem 1 is not true. There are non-normal complete uniform spaces (J. Dieudonné [2]).

To prove this suppose that \hat{S} is the completion of a uniform space S having the finite Lebesgue property. According to a theorem of my Note ([4], IV, p. 524), it is sufficient to prove the following proposition.

Every bounded continuous function on \hat{S} is uniformly continuous.

Let f(x) be a continuous function on \hat{S} , then the restricted function f(x|S) on S is uniformly continuous. Therefore, f(x|S) is uniform continuously extended on \hat{S} and it coincides with f(x). Thus f(x) is uniformly continuous, and \hat{S} has the finite Lebesgue property.

Under the assumption of Theorem 1, we shall consider the relation between the dimension of S and its completion \hat{S} . There are some definitions of dimension for a topological space. However, E. Hemmingsen [3] proved that some of these definitions are equivalent for normal space. Therefore, we shall use Lebesgue's covering definition by open sets. The order of a covering \mathfrak{F} is the maximum number *n* such that there are n+1 sets of \mathfrak{F} with non-empty intersection. A covering \mathfrak{F}_2 is called a *refinement* of a covering \mathfrak{F}_1 if to each member *U* of \mathfrak{F}_2 , there is a member *V* of \mathfrak{F}_1 such that $U \subset V$. By the *dimension* (by Lebesgue) of a space *S*, we shall mean the minimum number *n* such that, for any finite covering \mathfrak{F} of *S*, there is a finite covering \mathfrak{F}' of order *n* and \mathfrak{F}' is a refinement of \mathfrak{F} . By dim *S*, we shall denote the dimension of *S*.

We turn now to prove the following

Theorem 2. If the completion \hat{S} of a uniform space S having

the finite Lebesgue property is normal, then dim $S = \dim \hat{S}$.

To prove Theorem 2, we shall show

Lemma. Any uniform space S having the finite Lebesgue property is combinatorially imbedded in the completion \hat{S} in the strong sense.

The notion stated in the conclusion is due to E. Čech and J. Novak [1].

Proof. By a theorem of my Note ([4], III), S is normal, therefore, regular. Let F_1, F_2 be closed sets in S. Then we prove $\overline{F_1 \cap F_2} = \overline{F_1} \cap \overline{F_2}$, where the closure takes in \hat{S} , and this shows that S is combinatorially imbedded in \hat{S} in the strong sense. It is clear that $\overline{F_1 \cap F_2} \subset \overline{F_1} \cap \overline{F_2}$. Let $x \in \overline{F_1} \cap \overline{F_2} - \overline{F_1 \cap F_2}$, then, by the regularity of S, we can take a neighbourhood G of x in \hat{S} such that $\overline{G} \cap F_1 \cap F_2 = 0$. Let $G_1 = \overline{G} \cap F_1$, $G_2 = \overline{G} \cap F_2$, then $x \in \overline{G_1} \cap \overline{G_2}$ and G_1 and G_2 are disjoint and closed in S. By the normality of S, there is a bounded continuous function f on S such that f is 0 on G_1 , and f is 1 on G_2 . By the assumption of S, f is uniformly continuous and therefore f is continuously extended on \hat{S} . This implies $\overline{G_1} \cap \overline{G_2} = 0$, which contradicts $\overline{G_1} \cap \overline{G_2} \ni x$.

To prove Theorem 2, we shall prove the following theorem which is a generalisation of Theorem 2.

Theorem 3. Let S_1, S_2 be normal spaces. If $\overline{S}_1 = S_2$ and S_1 is combinatorially imbedded in S_2 in the strong sense, then dim S_1 =dim S_2 .

A special case of Theorem 3 has been proved by M. Katětov [6]. We shall prove Theorem 3 by using a similar method.

No. 2]

Proof. Let dim $S_2 \leq n$, and $\mathfrak{F} = \{G_1, \dots, G_n\}$ a finite covering of S_1 . \mathfrak{F} is shrinkable, by the normality of S_1 . Let a covering $\mathfrak{F}' = \{H_1, \dots, H_m\}$ of S_1 such that $\overline{H_i} \subset G_i \ (i=1, 2, \dots, m)$, and $0_i = S_2 - S_1 - \overline{H_i}$, then, since S_1 is combinatorially imbedded in S_2 in the strong sense, $\bigcup_{i=1}^m 0_i = S_2$. Hence the covering $\{0_i\}$ has a refinement $\mathfrak{F}'' = \{U_j\}$ of order $\leq n$. The covering $\{U_j \cap S_1\}$ of S_1 is a refinement of \mathfrak{F} and order $\leq n$.

Next suppose dim $S_1 \leq n$. Let $\mathfrak{F} = \{G_1, \dots, G_m\}$ be a covering of S_2 . By the normality of S_2 , \mathfrak{F} is shrinkable, and let $\mathfrak{F}' = \{H_i\}$ be a covering of S_2 such that $\overline{H_i} \subset G_i$ $(i=1, 2, \dots, m)$. Then we can find a covering $\mathfrak{F}'' = \{0_i\}$ of S_1 of order $\leq n$, and to each 0_i , there is an open set H_j such that $0_i \subset H_j$. Let $U_i = S_2 - S_1 - 0_i$, then we have

$$\bigcup_{i=1}^{m} U_{i} = S_{2} - \bigcap_{i=1}^{m} \overline{S_{1} - 0}_{i} = S_{2},$$

by our assumption. For some j, $\bigcap 0_j=0$ implies $\bigcap U_j=0$, and this shows that the order of the covering $\{0_i\}$ is not greater than n. If $0_i \subset H_j$, then $U_i \subset \overline{H_j} \subset G_j$, and the covering $\{U_i\}$ of S_2 is a refinement of \widetilde{v} . This completes the proof.

References

- E. Čech and J. Novak: On regular and combinatorial imbedding, Casopis pest. mat. fys., 72, 7-16 (1947).
- [2] J. Dieudonné: Sur les espaces uniformes complets, Ann. de l'Éc. Norm. Sup., 56, 277-291 (1939).
- [3] E. Hemmingsen: Some theorems in dimension theory for normal Hausdorff spaces, Duke Math. Jour., 13, 495-504 (1946).
- [4] K. Iséki: On the property of Lebesgue in uniform spaces. I-V, Proc. Japan Acad., 31, 220-221, 270-271, 441-442, 524-525, 618-619 (1955).
- [5] S. Kasahara: On the Lebesgue property in uniform spaces, Math. Japonicae, 3, 127-132 (1955).
- [6] M. Katětov: A theorem on the Lebesgue dimension, Casopis pest. mat. fys., 75, 79-87 (1950).