No. 27

Über die eindeutige Darstellung der Ideale als Durchschnitt schwacher Primärideale

Von Shinziro MORI

Mathematisches Institut, Hiroshima Universität, Japan (Comm. by Z. Suetuna, M.J.A., Feb. 13, 1956)

Es sei \Re ein kommutativer Ring mit Einheitselement, in dem sich jedes Ideal als Durchschnitt von endlich vielen schwachen Primäridealen darstellen lässt.* Dann gilt nach der Endlichkeit der Teilerkette von Halbprimidealen verständlicherweise

Hilfssatz 1. Es sei in der Teilerkette von Idealen aus \Re $\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \mathfrak{a}_3 \subset \cdots$

jedes Ideal kein Nilideal in bezug auf das vorangehende. Dann bricht die Kette im Endlichen ab.

Es ergibt sich hieraus

Hilfssatz 2. Ist die Darstellung $\mathfrak{a} = \mathfrak{q}_1 \smallfrown \mathfrak{q}_2 \smallfrown \cdots \smallfrown \mathfrak{q}_n$ eines Ideals \mathfrak{a} aus \mathfrak{R} eindeutig, so sind alle \mathfrak{q}_i die isolierten Primärkomponenten von \mathfrak{a} .

Zum Beweis seien q_1, q_2, \dots, q_s isoliert und q_{s+1}, \dots, q_n nicht isoliert. Es sei ferner \mathfrak{p}_n das zu \mathfrak{q}_n gehörige Primideal, welches ein Teiler von \mathfrak{p}_1 , aber, kein Teiler von $\mathfrak{p}_{s+1}, \dots, \mathfrak{p}_{n-1}$ ist. Dann können wir ein Element d_1 in $\mathfrak{q}_{s+1} \cap \dots \cap \mathfrak{q}_n$, aber ausserhalb von \mathfrak{p}_i $(i=1,2,\dots,s)$ finden. Daraus erhalten wir $\mathfrak{a}=\mathfrak{q}_1 \cap \dots \cap \mathfrak{q}_s \cap (d_1,\mathfrak{a})$, und nach der Eindeutigkeit der Darstellung von \mathfrak{a} $(d_1,\mathfrak{a})=\mathfrak{q}_1' \cap \dots \cap \mathfrak{q}_t' \cap \mathfrak{q}_{s+1} \cap \dots \cap \mathfrak{q}_n$, und dabei gehört \mathfrak{p}_i $(i=1,2,\dots,s)$ nicht zu (d_1,\mathfrak{a}) . Ist \mathfrak{q}_n nicht isoliert in bezug auf (d_1,\mathfrak{a}) , so suchen wir in $\mathfrak{q}_{s+1} \cap \dots \cap \mathfrak{q}_n$ ein Element d_2 auf, welches nicht nilpotent in bezug auf (d_1,\mathfrak{a}) ist. Dann gilt wieder

 $\mathfrak{a} = \mathfrak{q}_1 \smallfrown \cdots \smallfrown \mathfrak{q}_s \smallfrown (d_1, d_2, \mathfrak{a}), (d_1, d_2, \mathfrak{a}) = \mathfrak{q}_1'' \smallfrown \cdots \smallfrown \mathfrak{q}_n'' \smallfrown \mathfrak{q}_{s+1} \smallfrown \cdots \smallfrown \mathfrak{q}_n.$

Durch wiederholte Anwendung dieses Verfahrens erhalten wir nach Hilfssatz 1 endlich

^{*)} Es sei \Re ein kommutativer Ring ohne irgendwelche Bedingung. Jedes Ideal ist dann und nur dann als Durchschnitt von endlich vielen schwachen Primäridealen darstellbar, wenn in \Re folgende Bedingungen erfüllt sind:

^{1.} Jede Teilerkette von Halbprimidealen bricht im Endlichen ab.

^{2.} Jede Kette $\mathfrak{a} \subset \mathfrak{a}:(b) \subset \mathfrak{a}:(b^2) \subset \cdots$ für ein beliebiges Element b bricht im Endlichen ab, und der letzte Idealquotient \mathfrak{v}_1 heisst Grenzideal von \mathfrak{a} . Wenn wir von neuem die Kette $\mathfrak{v}_1 \subset \mathfrak{v}_1:(b_1) \subset \mathfrak{v}_1:(b_1^2) \subset \cdots$ für ein Element b_1 bilden, so gewinnen wir auch ein Grenzideal \mathfrak{v}_2 von \mathfrak{v}_1 . Wenn wir in solcher Weise eine Teilerkette $\mathfrak{a} \subset \mathfrak{v}_1 \subset \mathfrak{v}_2 \subset \cdots$ von Grenzidealen \mathfrak{v}_l erzeugen, liegt die Länge der Kette unterhalb einer mit \mathfrak{a} fest gegebenen Schranke.

Vgl. S. Mori: Über kommutative Ringe mit der Teilerkettenbedingung für Halbprimideale, Jour. Sci. Hiroshima Univ., **16**, 247–260 (1952).

$$\mathfrak{a} = \mathfrak{q}_1 \smallfrown \cdots \smallfrown \mathfrak{q}_s \smallfrown (d_1, d_2, \cdots, d_m, \mathfrak{a}),$$

$$(d_1, d_2, \cdots, d_m, \mathfrak{a}) = \mathfrak{q}_1^{(m)} \smallfrown \cdots \smallfrown \mathfrak{q}_v^{(m)} \smallfrown \mathfrak{q}_{s+1} \smallfrown \cdots \smallfrown \mathfrak{q}_n,$$

wobei q_n eine isolierte Primärkomponente von $(d_1, d_2, \dots, d_m, \mathfrak{a})$ ist. Da wir \mathfrak{p}_n als das zugehörige Primideal von q_n angenommen haben, so ergibt sich nach der Eindeutigkeit der Darstellung von \mathfrak{a}

$$\mathfrak{a} = \mathfrak{q}_1 \smallfrown \cdots \smallfrown \mathfrak{q}_s \smallfrown (d_1 \mathfrak{p}_n, d_2 \mathfrak{p}_n, \cdots, d_m \mathfrak{p}_n, \mathfrak{a}),$$

$$(d_1 \mathfrak{p}_n, \cdots, d_m \mathfrak{p}_n, \mathfrak{a}) = \mathfrak{q}_1^{(m+1)} \smallfrown \cdots \smallfrown \mathfrak{q}_v^{(m+1)} \smallfrown \mathfrak{q}_{s+1} \smallfrown \cdots \smallfrown \mathfrak{q}_n,$$

und dabei ist \mathfrak{q}_n auch eine isolierte Primärkomponente von $(d_1\mathfrak{p}_n,\cdots,d_m\mathfrak{p}_n,\mathfrak{a}).$

Aus $(d_1, d_2, \dots, d_m, \mathfrak{a}) \subseteq \mathfrak{q}_n$ und $(\mathfrak{q}_1^{(m+1)} \cap \dots \mathfrak{q}_w^{(m+1)} \cap \mathfrak{q}_{s+1} \cap \dots \cap \mathfrak{q}_{n-1}) \mathfrak{q}_n$ $\subseteq (d_1 \mathfrak{p}_n, d_2 \mathfrak{p}_n, \dots, d_m \mathfrak{p}_n, \mathfrak{a})$ folgt damit

$$r_1d_1 \equiv p_{11}d_1 + p_{12}d_2 + \dots + p_{1m}d_m$$
 (a)
 $r_2d_2 \equiv p_{21}d_1 + p_{22}d_2 + \dots + p_{2m}d_m$ (b)

$$r_m d_m \equiv p_{m1} d_1 + p_{m2} d_2 + \cdots + p_{mm} d_m$$
 (a),

wo p_i , die Elemente aus p_n und r_1, r_2, \dots, r_m die Elemente ausserhalb von p_n bedeuten.

Durch Elimination von d_2, \dots, d_m ergibt sich daraus

$$(r-p)d_1 \equiv 0$$
 (a), $r \in \mathfrak{p}_n$, $p \in \mathfrak{p}_n$.

Da aber $d_1 \notin \mathfrak{p}_1$, $\mathfrak{p}_1 \subset \mathfrak{p}_n$ ist, so erhalten wir $(r-p) \in \mathfrak{p}_1$, also $r \in \mathfrak{p}_n$. Das widerspricht aber der soeben gewonnenen Tatsache $r \notin \mathfrak{p}_n$. Hiermit müssen alle Primärkomponenten \mathfrak{q}_i von \mathfrak{a} isoliert sein.

Wir kommen nun zum Beweis des Satzes:

In \Re ist die Darstellung eines Ideals als Durchschnitt schwacher Primärideale dann und nur dann eindeutig, wenn folgende Bedingung erfüllt ist:

Ist ein Primideal \mathfrak{p}' ein Teiler eines anderen Primideals \mathfrak{p} , so gilt $\mathfrak{p}'\mathfrak{a}=\mathfrak{a}$ für jedes durch \mathfrak{p} teilbare Ideal \mathfrak{a} .

Es sei zunächst die Darstellung $\mathfrak{a} = \mathfrak{q}_1 \cap \mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n$ eindeutig. Dann ist \mathfrak{q}_i nach Hilfssatz 2 die isolierte Primärkomponente von \mathfrak{a} . Ist $\mathfrak{p}' \supset \mathfrak{p} \supset \mathfrak{a}$, so ist eine Primärkomponente von \mathfrak{a} durch \mathfrak{p} teilbar. Folglich haben \mathfrak{a} und $\mathfrak{a}\mathfrak{p}'$ dasselbe zugehörige Halbprimideal und dieselben isolierten Primärkomponenten. Hieraus folgt $\mathfrak{p}'\mathfrak{a} = \mathfrak{a}$.

Umgekehrt sei p'b=b für jedes Ideal b, wenn b \subseteq p \subset p' ist. Ist a ein Ideal und b das zu a gehörige Halbprimideal, so gilt nach der Endlichkeit der Halbprimidealenkette $\mathfrak{b}=\mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \cdots \cap \mathfrak{p}_n$. Es sei nun \mathfrak{q}_i die zu \mathfrak{p}_i gehörige isolierte Primärkomponente von a. Dann haben wir $\mathfrak{a}\subseteq \mathfrak{a}'=\mathfrak{q}_1 \cap \mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n$. Nach der Konstruktion von \mathfrak{q}_i können wir die Elemente r_1, r_2, \cdots, r_n so annehmen, dass für ein Element \mathfrak{a}' aus \mathfrak{a}'

$$r_i a' \in \mathfrak{a}, \quad r_i \notin \mathfrak{p}_i \quad (i=1,2,\cdots,n)$$

wird.

Wenn $a' \notin \mathfrak{a}$ ist, so erhalten wir

No. 2]

$$\mathfrak{v} = \mathfrak{a} : (a') \neq \mathfrak{R}, \quad (r_1, r_2, \cdots, r_n, \mathfrak{a}) \subseteq \mathfrak{v}.$$

Bedeutet $\mathfrak p$ ein zu $\mathfrak p$ gehöriges Primideal, so ist $\mathfrak p$ von $\mathfrak p_1, \mathfrak p_2, \cdots, \mathfrak p_n$ verschieden und eines, etwa $\mathfrak p_1$, aus $\mathfrak p_1, \cdots, \mathfrak p_n$ ist durch $\mathfrak p$ teilbar, und folglich ergibt sich $(a') \subset \mathfrak p_1 \subset \mathfrak p$. Nach unserer Voraussetzung erhalten wir damit $\mathfrak p(a') = (a')$, und danach $a' \equiv pa'$ (a) für ein Element p aus $\mathfrak p$. Aus $\mathfrak p = \mathfrak a : (a')$ folgt damit $(1-p) \subset \mathfrak p$. Da aber $\mathfrak p \supseteq \mathfrak p$ ist, ergibt sich daraus ein Widerspruch $\mathfrak p = \mathfrak R$. Hiermit muss $\mathfrak a = \mathfrak q_1 \cap \mathfrak q_2 \cap \cdots \cap \mathfrak q_n$ sein. Aus dem Ergebniss, dass $\mathfrak q_i$ isoliert ist, geht die Eindeutigkeit der Darstellung von $\mathfrak a$ klar hervor.