38. A Theorem of Dimension Theory

By Jun-iti NAGATA

Department of Mathematics, Osaka City University (Comm. by K. KUNUGI, M.J.A., March 12, 1956)

Recently a dimension theory for general metric spaces has been established by M. Katětov and K. Morita.¹⁾ The purpose of this note is to study some necessary and sufficient conditions for *n*dimensionality of general metric spaces. In the present note we take the definition of dimension by H. Lebesgue or that by M. Katětov and K. Morita as the same: dim R=-1 for $R=\phi$, dim $R\leq n$ if and only if for any pair of a closed set F and an open set G with $F\subseteq G$ there exists an open set U such that $F\subseteq U\subseteq G$, dim B(U) $\leq n-1.^{2}$

Definition. For two collections $\mathfrak{U}, \mathfrak{U}'$ of open sets we denote by $\mathfrak{U} < \mathfrak{U}'$ the fact that $U \subseteq U'$ for every $U \in \mathfrak{U}$ and for some $U' \in \mathfrak{U}'$.

Definition. We mean by a disjoint collection a collection \mathbb{I} of open sets such that $U, U' \in \mathbb{I}$ and $U \neq U'$ imply $U \cap U' = \phi$.

Theorem 1. In order that dim $R \leq n$ for a metric space R it is necessary and sufficient that there exist n+1 sequences $\mathbb{U}_1^i > \mathbb{U}_2^i > \cdots$ $(i=1, 2, \cdots, n+1)$ of disjoint collections such that $\{\mathbb{U}_m^i | i=1, \cdots, n+1;$ $m=1, 2, \cdots\}$ is an open basis of R.

Proof. If dim R=0,³⁾ then from M there exists a sequence \mathfrak{V}_m $(m=1,2,\cdots)$ of locally finite coverings consisting of open, closed sets such that $S(p, \mathfrak{V}_m)$ $(m=1, 2, \cdots)^{4)}$ is a nbd (=neighbourhood) basis of each point p of R. For $\mathfrak{V}_m = \{V_a \mid \alpha < \tau\}$ we define $\mathfrak{V}'_m = \{V_a - \bigvee_{\beta < a} V_{\beta} \mid \alpha < \tau\}$ and $\mathfrak{U}_1 = \mathfrak{V}'_1$, $\mathfrak{U}_2 = \mathfrak{U}_1 \land \mathfrak{V}'_2$, $\mathfrak{U}_3 = \mathfrak{U}_2 \land \mathfrak{V}'_3$, \cdots . Then $\mathfrak{U}_1 > \mathfrak{U}_2 > \cdots$ is a sequence of disjoint collections, and $\{\mathfrak{U}_m \mid m=1, 2, \cdots\}$ is an open basis of R.

Conversely, if there exists a sequence $\mathfrak{ll}_1 > \mathfrak{ll}_2 > \cdots$ of disjoint

1) M. Katětov: On the dimension of non-separable spaces. I, Czechoslovak Mathematical Journal, **2** (77), (1952). K. Morita: Normal families and dimension theory for metric spaces, Math. Annalen, **128** (1954); A condition for the metrizability of topological spaces and for *n*-dimensionality, Science Reports of the Tokyo Kyoiku Daigaku, Sect. A, **5**, No. 114 (1955).

2) B(U) denotes the boundary of U. See K. Morita: Normal families and dimension theory for metric spaces; from now forth we call this paper M.

3) From now forth we assume $R \neq \phi$.

4) In this note we concern ourselves only with open coverings. We call \mathfrak{B} a locally finite covering if every point of R has some neighbourhood intersecting only finitely many elements of \mathfrak{B} . $S(A,\mathfrak{B}) = \smile \{V | V \in \mathfrak{B}, V \land A \neq \phi\}$ for $A \subseteq R$. Notations of this paper are chiefly due to J. W. Tukey: Convergence and uniformity in topology (1940).

collections such that $\{\mathfrak{U}_m \mid m=1, 2, \cdots\}$ is an open basis of R, then for an arbitrary point p of R and for every $U \in \mathfrak{U}_m$, $p \in U$ implies $U \frown U' = \phi$ $(U \neq U' \in \mathfrak{U}_m)$, and $p \notin U$ for every $U \in \mathfrak{U}_m$ implies $\frown \{S(p, \mathfrak{U}_j) \mid j=1, \cdots, m-1; S(p, \mathfrak{U}_j) \neq \phi\} = p$ from the fact that $\{\mathfrak{U}_m \mid m=1, 2, \cdots\}$ is an open basis of R. Hence each \mathfrak{U}_m is locally finite and consists of open, closed sets, and hence dim R=0 from M.

Now we proceed to *n*-dimensional cases. Let dim $R \leq n$, then we can decompose R into n+1 0-dimensional spaces R_i $(i=1,\dots,n+1)$ by the general decomposition theorem due to Katetov and Morita, i.e. disjoint collections of R_i such that $\{\mathfrak{B}_m^i \mid m=1, 2, \cdots\}$ is an open basis of R_i . As is obvious from the above discussion for 0-dimensional cases, we may assume that every \mathfrak{B}_m^i covers R_i . We put $\mathfrak{B}_m^i = \{V_{am} \mid i \in V_{am}\}$ $\alpha \in A$ and take the maximal positive number ε for each $x \in V_{am}$ such that $S_{\varepsilon}(x) \cap R_i \subseteq V_{am}$.⁵⁾ Furthermore, we define $\varepsilon(m, x) = \text{Min}$ $\left(\frac{1}{m},\frac{\varepsilon}{2}\right), \quad U_{\mathrm{am}}=\overset{\smile}{=}\{S_{\varepsilon(m,x)}(x) \mid x \in V_{\mathrm{am}}\}, \quad \mathfrak{U}_{\mathrm{m}}^{i}=\{U_{\mathrm{am}} \mid \alpha \in A\}.$ Then it is obvious that $\mathfrak{ll}_1^i > \mathfrak{ll}_2^i > \cdots$ and each \mathfrak{ll}_m^i is a disjoint collection from the disjointness of \mathfrak{B}_m^i and from the definition of U_{am} . Next we take an arbitrary point x of R and a positive number δ . We can take positive integers m, l such that $\frac{2}{m} < \delta$, $l \ge m$, $x \in V_{al} \subseteq S_{1/m}(x)$ for some $V_{al} \in \mathfrak{B}_{l}^{i}$. Since for these integers $x \in U_{al} \subseteq S_{2/m}(x) \subseteq S_{\delta}(x)$ is obvious, we obtain an open basis $\{\mathfrak{U}_m^i \mid i=1,\dots,n+1; m=1,2,\dots\}$ of R.

Conversely, if R admits n+1 sequences $\mathbb{U}_{i}^{i} > \mathbb{U}_{2}^{i} > \cdots$ $(i=1,\cdots, n+1)$ such that $\{\mathbb{U}_{m}^{i} | i=1,\cdots, n+1; m=1,2,\cdots\}$ is an open basis of R, then we define $R_{i} = \{x \mid S(x, \mathbb{U}_{m}^{i}) \ (m=1,2,\cdots)$ is a nbd basis of $x\}$. Since \mathbb{U}_{m}^{i} is a disjoint collection of R_{i} and $\{\mathbb{U}_{m}^{i} | m=1,2,\cdots\}$ is an open basis of R_{i} , dim $R_{i}=0$. Hence we get dim $R \leq n$ from $R = \underbrace{\overset{n+1}{\longrightarrow}}_{i}R_{i}$.

Theorem 2. In order that a T. topological space R is a metrizable space with dim $R \leq n$ it is necessary and sufficient that there exists a sequence $\mathfrak{V}_1 > \mathfrak{V}_2^* > \mathfrak{V}_2 > \mathfrak{V}_3^* > \cdots^{\mathfrak{G}_2}$ of open coverings such that $S(p, \mathfrak{V}_m)$ $(m=1, 2, \cdots)$ is a nbd basis for each point p of R and such that each set of \mathfrak{V}_{m+1} intersects at most n+1 sets of \mathfrak{V}_m .

Proof. Necessity. If R is a metric space with dim $R \leq n$, then $R = \bigcup_{i=1}^{n+1} R_i$ for some 0-dimensional spaces R_i $(i=1,\cdots,n+1)$. Let $\mathfrak{U} = \{U_a \mid a \in A\}$ be an arbitrary locally finite open covering of R, then there exists a disjoint covering $\mathfrak{B}_i = \{V_a \mid a \in A\}$ of R_i such

- 5) $S_{\varepsilon}(x) = \{y \mid \text{distance } (x, y) < \varepsilon\}.$
- 6) $\mathfrak{B}^* = \{ S(V, \mathfrak{B}) \mid V \in \mathfrak{B} \}.$

that $V_{\alpha} \subseteq U_{\alpha}$. Defining $V'_{\alpha} = \bigcup \{S_{\varepsilon(x)/2}(x) \mid x \in V_{\alpha}\}$ for $\varepsilon(x)$ such that $R_i \cap S_{\varepsilon(x)}(x) \subseteq V_{\alpha}, S_{\varepsilon(x)}(x) \subseteq U_{\alpha}$, we get a disjoint collection $\mathfrak{B}'_i = \{V'_{\alpha} \mid \alpha \in A\}$ of R such that $\mathfrak{B}'_i < \mathfrak{U}$. Hence $\mathfrak{B}' = \underbrace{\mathfrak{B}'_i}_{i=1} \mathfrak{B}'_i$ is a locally finite covering of R with order of $\mathfrak{B}' \leq n+1$ and is a refinement of \mathfrak{U} . Hence there exists an open covering $\mathfrak{B}'' = \{V''_{\beta} \mid \beta \in B\}$ of R such that $\overline{V}'_{\beta} \subseteq V'_{\beta}$ for $\mathfrak{B}' = \{V'_{\beta} \mid \beta \in B\}$. It is obvious that every point p of R has some nbd intersecting at most n+1 of sets belonging to \mathfrak{B}'' ; we call such a covering to be of local order $\leq n+1$.

Now let $\mathbb{U}_1 > \mathbb{U}_2 > \cdots$ be a sequence of uniform coverings giving the uniform topology of R, then from the paracompactness⁷ of Rand from the above conclusion we get a refinement \mathfrak{B}_1 of \mathbb{U}_1 of local order $\leq n+1$. Furthermore, we get a refinement \mathfrak{B}_2 of \mathbb{U}_2 such that $\mathfrak{B}_2^* < \mathfrak{B}_1$, each set of \mathfrak{B}_2 intersects at most n+1 sets of \mathfrak{B}_1 and such that local order of $\mathfrak{B}_2 \leq n+1$. By repeating such processes we obtain a sequence $\mathfrak{B}_1 > \mathfrak{B}_2^* > \mathfrak{B}_2 > \mathfrak{B}_3^* > \cdots$ of open coverings such that $\mathfrak{B}_m < \mathfrak{U}_m$ and such that each set of \mathfrak{B}_{m+1} intersects at most n+1 of sets belonging to \mathfrak{B}_m . Since $S(p, \mathfrak{U}_m)$ $(m=1, 2, \cdots)$ is a nbd basis of $p, S(p, \mathfrak{B}_m)$ $(m=1, 2, \cdots)$ is also a nbd basis of p, and hence the necessity is proved.

Sufficiency. The metrizability of such a space is obvious from Urysohn-Alexandroff's theorem. We divide the proof of n-dimensionality into three parts.

1. If $\mathfrak{B}_1 > \mathfrak{B}_2^* > \cdots$ is a sequence satisfying the condition of this theorem, then for each point p of R, $S^{n+2}(p, \mathfrak{B}_{m+1+n+2})$ intersects obviously at most n+1 sets of \mathfrak{B}_m .⁸⁾ Putting $\mathfrak{U}_m = \mathfrak{B}_{1+(m-1)(n+3)}$ $(m=1, 2, \cdots)$, we get a sequence $\mathfrak{U}_1 > \mathfrak{U}_2^* > \mathfrak{U}_2 > \mathfrak{U}_3^* > \cdots$ of open coverings such that $S(p, \mathfrak{U}_m)$ $(m=1, 2, \cdots)$ is a nbd basis of $p \in R$ and such that each $S^{n+2}(p, \mathfrak{U}_{m+1})$ intersects at most n+1 sets of \mathfrak{U}_m .

Let $\mathfrak{ll}_m = \{U_a \mid \alpha < \tau\}$, then we can prove firstly that there exist open sets U_a^i such that $\overset{n+1}{\underset{i=1}{\overset{n+1}{\overset{}}}} U_a^i \subseteq U_a$, $U_a^i \frown U_\beta^i = \phi$ for $\alpha \neq \beta$ and such that $U_a \supseteq M \in \mathfrak{ll}_{m+1}$ implies $M \subseteq U_a^i$ for some U_a^i . To prove this we define U_a^i ($\alpha < \tau$) by induction so that

1) $\bigcup_{i=1}^{n+1} U_a^i \subseteq U_a$, 2) $U_a^i \cap U_{\beta}^i = \phi$ for $\beta < \alpha$, 3) $U_a \supseteq M \in \mathbb{U}_{m+1}$ implies $M \subseteq U_a^i$ for some U_a^i , 4) $U_a^i \cap W_a^{n-i+2} = \phi$ $(i=1,\cdots,n+1)$, where we put $S_a^k = \{p \mid S^k(p, \mathbb{U}_{m+1}) \text{ intersects some } k \text{ sets of } U_{\tau} \ (\gamma > \alpha)\}$ $(k=1, 2, \cdots, n+1)$ and $W_a^k = S_a^k \cap S_a^{k+1} \cap \cdots \cap S_a^{n+1}$.

For $\alpha = 0$ we define $U_0^1 = U_0$, $U_0^i = \phi$ $(i=2, \dots, n+1)$. Since $S(p, U_{m+1})$ intersects at most n+1 of U_{α} $(\alpha < \tau)$, $U_0^1 \cap W_0^{n+1} = \phi$ is obvious,

⁷⁾ Every fully normal space is paracompact by A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc., **54** (1948).

⁸⁾ $S^{1}(p, \mathfrak{B}) = S(p, \mathfrak{B}), \quad S^{n+1}(p, \mathfrak{B}) = S(S^{n}(p, \mathfrak{B}), \mathfrak{B}).$

and the other three conditions, also, are obviously satisfied.

Let us assume that U_{β}^{i} are defined for $\beta < \alpha$, then putting $V_{a}^{i} = \bigcup_{\beta < a}^{i} U_{\beta}^{i}$ and $U_{a}^{i} = U_{a} - \overline{V_{a}^{i}} \bigcup_{\alpha}^{n-i+2} (i=1,2,\cdots,n+1)$, we get U_{a}^{i} satisfying 1)-4). Since the validities of 1), 2), 4) for U_{a}^{i} are clear, we prove 3) only. If $M \in \mathbb{I}_{m+1}$ is an arbitrary set contained in U_{a} , then since every $S^{n+2}(p, \mathbb{I}_{m+1})$ intersects at most n+1 sets of U_{τ} $(\gamma \ge \alpha)$, $M \cap W_{a}^{n+1} \subseteq U_{a} \cap W_{a}^{n+1} = U_{a} \cap S_{a}^{n+1} = \phi$ from the definition of S_{a}^{n+1} . Hence either $M \cap W_{a}^{i} = \phi$ $(i=1,\cdots,n+1)$ or $M \cap W_{a}^{n-i+2} \neq \phi$, $M \cap W_{a}^{n-i+3} = \phi$ for some i such that $2 \le n-i+3 \le n+1$. If the former is the case, then $M \cap W_{a}^{1} = \phi$. Since $U_{a} \subseteq S_{\beta}^{1} \subseteq W_{\beta}^{1}$ is obvious for every $\beta < \alpha$, and since $U_{\beta}^{n+1} \cap W_{\beta}^{1} = \phi$ for every $\beta < \alpha$, and hence $U_{a} \cap V_{a}^{n+1} = \phi$. Thus we get $M \cap V_{a}^{n+1} = \phi$ and consequently $M \subseteq U_{a}^{n+1}$.

If the latter is the case, *i.e.* $y \in M \cap W_a^{n-i+2} \neq \phi$, $M \cap W_a^{n-i+3} = \phi$, $2 \leq n-i+3 \leq n+1$, then $y \in S_a^{n-i+2+k}$ for some $k \geq 0$, *i.e.* $S^{n-i+2+k}(y, \mathbb{I}_{m+1})$ intersects some n-i+2+k sets of U_{τ} $(\gamma > \alpha)$. Since $x, y \in M \in \mathbb{I}_{m+1}$, $S^{n-i+2+k+1}(x, \mathbb{I}_{m+1})$ intersects n-i+2+k+1 sets of $U_{\tau}(\gamma \geq \alpha)$. Hence $x \in S_{\beta}^{n-i+3+k} \subseteq W_{\beta}^{n-i+3}$ for every $\beta < \alpha$, and hence $M \subseteq W_{\beta}^{n-i+3}$. Since $U_{\beta}^{i-1} \cap W_{\beta}^{n-i+3} = \phi$ $(\beta < \alpha)$ from the assumption of induction, we get $M \cap U_{\beta}^{i-1} = \phi$ $(\beta < \alpha)$ and consequently $M \cap V_a^{i-1} = \phi$. Combining this conclusion with the assumption $M \cap W_a^{n-i+3} = \phi$, we obtain $M \cap (\overline{V_a}^{i-1} \cap \overline{W_a}^{n-i+3}) = \phi$, *i.e.* $M \subseteq U_a^{i-1}$. Thus the condition 3) is valid for α , and hence we can define U_{α}^i $(i=1,\cdots,n+1)$ satisfying 1)-3) for every $\alpha < \tau$.

2. Since $\mathfrak{U}_{m+2}^* < \mathfrak{U}_{m+1} < \{U_a^i | i=1, \cdots, n+1; \alpha < \tau\}$, if we put \mathfrak{U}_m^i = $\{U_a^i - S(R - U_a^i, \mathfrak{U}_{m+2}) | \alpha < \tau\}$, then $\overset{n+1}{\underset{i=1}{\overset{n+1}{\overset{i=$

For every $U \in \mathfrak{l}_{2k-1}^{i}$ $(k=1,2,\cdots)$ we define inductively $\mathfrak{S}(U) = \mathfrak{S}^{1}(U) = \{U' \mid U' \in \mathfrak{l}_{2k-1+2j}^{i} \text{ for some natural number } j, S(U', \mathfrak{l}_{2k-1+2j}) \cap U \neq \phi\}, \mathfrak{S}^{m+1}(U) = \mathfrak{S}(U') \mid U' \in \mathfrak{S}^{m}(U)\}$ $(m=1,2,\cdots).$ (From now forth we denote by $U \leftarrow U'$ the fact that $S(U', \mathfrak{l}_{2k-1+2j}) \cap U \neq \phi$ for $U' \in \mathfrak{l}_{2k-1+2j}^{i}$, $U \in \mathfrak{l}_{2k-1}^{i}$.) Furthermore, we define $S(U) = \mathfrak{V}[U'|U' \in \mathfrak{S}^{m-1}(U)]$ $\mathfrak{S}(U_{2k-1+2j}) \cap U \neq \phi$ for $U' \in \mathfrak{l}_{2k-1+2j}^{i}$, $U \in \mathfrak{l}_{2k-1}^{i}$.) Furthermore, we define $S(U) = \mathfrak{V}[U'|U' \in \mathfrak{S}^{m-1}(U)]$. The principal object of the second part is to prove i) U_{1} , $U_{2} \in \mathfrak{l}_{2k-1}^{i}$ and $U_{1} \neq U_{2}$ imply $S(U_{1}) \cap S(U_{2}) = \phi$, ii) $U_{1} \in \mathfrak{l}_{2k-1}^{i}$ and $U_{2} \in \mathfrak{l}_{2k-1+l}^{i}$ for some $l \geq 2$ imply $S(U_{2}) \subseteq S(U_{1})$ or $S(U_{1}) \cap S(U_{2}) = \phi$.

 Since $\mathfrak{U}_{2k-1+n(p)}^* < \mathfrak{U}_{2k-1+n(p)-1}$, from the meaning of \leftarrow combining with the above notice we see easily $V_j \subseteq S(V_j, \mathfrak{U}_{2k-1+n(j)}) \subseteq S(V_{j-1}, \mathfrak{U}_{2k-1+n(j-1)})$ $\subseteq S(V_{j-2}, \mathfrak{U}_{2k-1+n(j-2)}) \subseteq \cdots \subseteq S(V_1, \mathfrak{U}_{2k-1+n(1)}) \subseteq U'$ for some $U' \in \mathfrak{U}_{2k-1+1}$. Since $U' \cap U_1 \neq \phi$ from the fact $U_1 \leftarrow V_1$, we get $V_j \subseteq S(U_1, \mathfrak{U}_{2k-1+1})$. Therefore $S(U_1) \subseteq S(U_1, \mathfrak{U}_{2k-1+1})$. If $U_1, U_2 \in \mathfrak{U}_{2k-1}^i$ and $U_1 \neq U_2$, then since $S(U_1, \mathfrak{U}_{2k-1+1}) \cap S(U_2, \mathfrak{U}_{2k-1+1}) = \phi$, we can conclude $S(U_1) \cap S(U_2)$ $= \phi$. As is easily seen from the above discussion, it holds $\{S(U) \mid U \in \mathfrak{U}_{2k-1}^i\} < \mathfrak{U}_{2k-1}^i$, which will be used later.

Next we proceed to the case of ii). If $S(U_1) \cap S(U_2) \neq \phi$ for $U_1 \in \mathbb{U}_{2k-1}^i$ and $U_2 \in \mathbb{U}_{2k-1+l}^i$, then there exist some $V_p \in \mathfrak{S}^p(U_1), W_q \in \mathfrak{S}^q(U_2)$ with $V_p \cap W_q \neq \phi$ and consequently two sequences $U_1 = V_0 \leftarrow V_1 \leftarrow V_2$ $\leftarrow \cdots \leftarrow V_p, U_2 = W_0 \leftarrow W_1 \leftarrow W_2 \leftarrow \cdots \leftarrow W_q \text{ of } V_j \in \mathfrak{U}_{2k-1+n(j)}^i \ (j=0,1,\cdots,p)$ and of $W_j \in \mathbb{1}_{2k-1+l+m(j)}^i$ $(j=0,1,\cdots,q)$ respectively. We take $j \ge 0$ such that $2k-1+n(j) \leq 2k-1+l < 2k-1+n(j+1)$; we notice 2k-1 $+l+2 \leq 2k-1+n(j+1)$. Since 2k-1+n(j)=2k-1+l implies $S(U_2)$ $=S(V_j)\subseteq S(U_1)$ from i), we assume 2k-1+n(j)<2k-1+l. \mathbf{If} 2k-1+n(p)<2k-1+l, then since from the discussion of i) there exists $W' \in \mathbb{U}_{2k-1+\ell+1}$ such that $W' \supseteq W_q$ and $W' \supset U_2 \neq \phi$, we get $V_p \leftarrow U_2$, and hence $S(U_2) \subseteq S(V_p) \subseteq S(U_1)$. If j < p, then from the discussion of i) there exist $W' \in \mathfrak{ll}_{2k-1+l+1}$ and $V' \in \mathfrak{ll}_{2k-1+n(j+1)+1}$ such that $W' \supseteq W_q$, $W' \cap U_2 \neq \phi, V' \supseteq V_p, V' \cap V_{j+1} \neq \phi.$ Since $V_j \leftarrow V_{j+1}$, there exists $V'' \in \mathfrak{U}_{2k-1+n(j+1)}$ with $V'' \frown V_{j+1} \neq \phi$, $V'' \frown V_j \neq \phi$. Therefore $V' \smile V_{j+1}$ $V'' \in \mathcal{U}_{2k-1+n(j+1)}^* < \mathcal{U}_{2k-1+l+1}$ from the fact $2k-1+l+2 \leq 2k-1+n(j+1)$. Since $W_q \cap V_p \subseteq W' \cap V' \neq \phi$, $W' \subseteq V' \subseteq V' \subseteq V' = W'' \in \mathcal{U}_{2k-1+l+1}^* <$ \mathfrak{ll}_{2k-1+i} and $W' \cap U_2 \subseteq W'' \cap U_2 \neq \phi$, $V'' \cap V_j \subseteq W'' \cap V_j \neq \phi$. Thus we conclude $V_i \leftarrow U_2$ and consequently $S(U_2) \subseteq S(V_i) \subseteq S(U_1)$.

3. Putting $\mathfrak{S}_{m}^{i} = \{S(U) \mid U \in \mathfrak{ll}_{2m-1}^{i}\}$, we define inductively $\mathfrak{S}_{m+1}^{i} = \mathfrak{S}_{m}^{i} \subset \{S \mid S \in \mathfrak{S}_{m+1}^{i}, S \not S \not S' \text{ for every } S' \in \mathfrak{S}_{m}^{i}\}$, $\mathfrak{m} \mathfrak{S}_{m+j+1}^{i} = \mathfrak{m} \mathfrak{S}_{m+j}^{i} \subset \{S \mid S \in \mathfrak{S}_{m+j+1}^{i}\}$, $S \not \subseteq S'$ for every $S' \in \mathfrak{m} \mathfrak{S}_{m+j}^{i}\}$ $(j=1,2,\cdots)$ for a fixed m. Then $\mathfrak{X}_{m}^{i} = \overset{\circ}{\underset{j=1}{\overset{\circ}{}}} \mathfrak{m} \mathfrak{S}_{m+j}^{i}$ is a disjoint collection from 2. Since $\mathfrak{m}_{m+1} \mathfrak{S}_{m+1+j}^{i}$ $< \overset{j}{\underset{k=0}{\overset{\circ}{}}} \mathfrak{S}_{m+1+k}^{i} < \mathfrak{m} \mathfrak{S}_{m+1+j}^{i}$, $\mathfrak{X}_{m+1}^{i} = \overset{\circ}{\underset{j=1}{\overset{o}{}}} \mathfrak{m}_{m+1+j}^{i} < \overset{\circ}{\underset{j=2}{\overset{o}{}}} \mathfrak{m} \mathfrak{S}_{m+j}^{i} < \overset{\circ}{\underset{j=1}{\overset{o}{}}} \mathfrak{m} \mathfrak{S}_{m+j}^{i} = \mathfrak{X}_{m}^{i}$. Since $\mathfrak{m}_{j=1}^{n+1} \mathfrak{S}_{m}^{i} (> \mathfrak{ll}_{2m})$ covers R and is a refinement of \mathfrak{ll}_{2m-1}^{*} from the remark at the end of the proof of 2-i). $S(p, \overset{\mathfrak{m+1}{\underset{i=1}{\overset{o}{}}} \mathfrak{S}_{m}^{i})$ is a nbd basis for every point p of R; hence from $\mathfrak{S}_{m}^{i} \subseteq \mathfrak{X}_{m}^{i}$ it is obvious that $\{\mathfrak{X}_{m}^{i} \mid i=1,\cdots, n+1; m=1, 2, \cdots\}$ is an open basis of R. Thus we get n+1 sequences $\mathfrak{X}_{1}^{i} > \mathfrak{X}_{2}^{i} > \cdots (i=1,\cdots, n+1)$ of disjoint collections such that $\{\mathfrak{X}_{m}^{i}\}$ is an open basis of R. Therefore we conclude dim $R \leq n$ from Theorem 1.