254 [Vol. 32,

59. A Generalisation of Wallace Theorem on Semi-groups

By Yasue MIYANAGA

(Comm. by K. Kunugi, M.J.A., April 12, 1956)

In his paper [4], A. D. Wallace has proved the following

Theorem 1. If S is a compact abelian semi-group and if each element of S is idempotent, then S has a zero-element.

In this Note, we shall extend his result to homogroup, a larger class of semi-groups.

A homogroup was studied by G. Thierrin, A. H. Clifford and D. D. Miller [1]. Following G. Thierrin [3], we shall define homogroups.

Definition. A semi-group S is called homogroup, if

- (1) S contains an idempotent e.
- (2) For each $x \in S$, there are elements x' and x'' such that xx' = e=x''x.
- (3) For any $x \in S$, xe = ex.

G. Thierrin [3] proved that $N = \{xe \mid x \in S\}$ is a group and a two-sided ideal. It is clear that the idempotent e is the unit of N.

Now, we shall prove the following theorem which is a generalisation of A. D. Wallace's result [4].

Theorem 2. If each element of a homogroup S is idempotent, then S has a zero-element.

Proof. Let x be an element of S, then the element xe is an idempotent, by the assumption of S and $xe \in N$. Hence

$$xe \cdot xe = xe$$
.

Since N is a group, xe has an inverse in N. Therefore, for every $x \in S$, we have

$$xe=e$$
.

This shows that e is a zero-element of S. The proof is complete.

It is known that any compact abelian semi-group is a homogroup (see K. Iséki [2]). Therefore, if each element of a compact abelian semi-group S is idempotent, then, by Theorem 2, S has a zero-element. Thus, the proof of Theorem 1 is complete.

References

- A. H. Clifford and D. D. Miller: Semi-groups having zeroid elements, Amer. Jour. Math., 70, 117-125 (1948).
- [2] K. Iséki: On compact abelian semi-groups, Michigan Math. Jour., 2, 59-60 (1953).
- [3] G. Thierrin: Sur les homogroupes, C. R. Acad. Sci., Paris, 234, 1519-1521 (1952).
- [4] A. D. Wallace: A note on mobs, Anais Acad. Brasil. Ciencias, 24, 329-334 (1952).