
234 [Vol. 32,

54. Evans.Selberg’s Theorem on Abstract Riemann Surfaces
with Positive Boundaries. II

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University

(Comm. by K. KuNuaI, M.J.A., April 12, 1956)

Our N((p,q) is increasing with respect ;o m. We define
the value of N(z, q) at minimal point p by limN>(p, q) denoted

M

by N(p, q). I p ov q blong’s o R, his dfinition is equiwlent to
that defined before.

If V(p) is not regular, we define Nv,((p, q)by limNv,,(p, q),

where m’<m and V,(p) is regular. In the case when V(p) is reg-
ular, it is proved that lim N,,(.(p, q.)-Nv((p, q), hence we can

define Nu(p,q)for every m<supN(z,p)=M’. As in case of a
zR

Riemann surface with a null-boundary, we can prove the following

Theorem 10. 1) N(z, q) (q e R) is -lower semicontinuou in R
+

2) N(z, q) is superharmonic in weak sense at every point of R
+B1.

3) If p and q are in R+B, then N(p, q)=N(q, p).

Till now Nz, q) (qR) is defined only on R+B. Next
we define Nz, q) at poinCs belonging to Bo. If pBo, Nz,p)

=fN(z, p)dt(p) (p B) by Theorem 8. Although he uniqueness

of this mass distribution is not proved by the present author, the
value of N(z, q) in R+B is uniquely determined. On the oCher hand,
by 3), for q B, N(p, q)-N(q, p). Hence it is quite natural o define

Che value of N(z, q) at p Bo by fN(p, q)d(p). Evidently by 3),
in such definition, we have N(q, p)=N(p, q), where the Cerm of Che
right hand side does no depend on a particular distribution bu on
he behaviour of N(z, q), because N(p, q)= lira Nv((p, q) and

2Vv,,((p, q) is defined by the value o N(z, q) on OV(p). As for the

behaviour of N(z, q) (q R), we have he following

Theorem 11. 1) If q R+ B, then N(p, q)-N(q, p) for p R.

y2) If q R and p e R+B, then N(p, q)= N(p, q)d#(q), where

N(z, fN(z,
3) N(z, q) (q e R) is -lower semicontinuous in R.
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1’) For every p and q belonging to R, N(p, q)-N(q, p).
7. Potentials on R. In the sequel, we shall study the mass

distributions on R. We have seen that N(z, p) has the essential prop-

erties of logarithmic potential: lower semicontinuity in R, sym-
metricity and superharmonicity in R+B. But there exists the fatal
difference between our case and space, that is, the real mass distri-
bution can be defined only on R+B, i.e. the distribution on Bo is
superficial and it can be replaced, by Theorem 8, by that on B
where N(z, p) is superharmonic. Therefore only subsets R+B of
R can be a kernel of mass distribution. Hence it is easy to construct
the potential theory on R.

The energy integral I() of a mass distribution on a -closed
subset of R+B defined as in space

and the capacity is defined as usual. In 1, we defined capacity of
F, we must study the relation between two capacities. At first,
we have, if Cap(F)>0, Cap(F)>0. Now we have the following

Theorem 12. Let F be a -closed subset of R +B of capacity
positive. Then there exists a unit mass distribution on F whose
energy is minimal and whose potential U(z) has the following properties:

1) U(z) is a constant C on the kernel of this distribution.

2) U(z)-C on E except possibly a set of capacity zero.
s) U(z)-
4) U(z)-C,(z), where o,(z) is the equilibrium potential of F.

By 2) o this theorem and by 2)of Theorem 5, we have the ollowing

Corollary. Cap(F) Cap(F).

Transfinite diameter. Since N(z, p) (p e R) is S-lower semicontinuous
in R, he transfinite diameter of a -closed subset A of R is define
as ollows:

1 --lim(min(- "’

p:,p A

Then as in the case of R* with a null-boundary, we have the follow-
ing

Theorem 13. If D=O for a $-closed subse A of R, then there

exists a superharmonic fnction U(z) in R such that U(z)-O on 3Ro,

f U(z)- at every point of3U(z) ds-2 ad A.n
For a -closed subset A of R+B, it can be proved as in space
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D=-- where I() is the energy of the equilibrium potential of

A. Hence we have the following
Theorem 1 (Extension of Evans-Selberg’s theorem). Le$ A be

a 8-closed subset of R/B, of cpacity zero. Then there exists a unit
mass distribution on A whose potential atisges the following prop-
erties:

V(z)=O on
2) U(z)= at every point of A.
s) u(z)=

4) f U(z) ds-f U(z) ds, for the niveau curve C of U(z)n n
Ro r

with r E, where E is a set in the interval 0, J such that mesE--0.
In general cases we can not omit the condition that A is a sub-

set of R+B. The reason is as follows: there may exist a set
Bo which is an Fo and of capacity zero and any mass can not be
distributed on Bo, in other words, Bo has behaviour like an empty
set in space for mass distribution though B0 is not empty.

The value of U(z) at a point p e Bo is given as ollows: since

N(z. p)=fiN(z, pc,)dt(p)(p B), U(p) fU(p,)dt(p). Therefore U(z)

may be infinite at larger set A’ than A.


