52. Contribution to the Theory of Semi-groups. II

By Kiyoshi ISÉKI

Kobe University

(Comm. by K. KUNUGI, M.J.A., April 12, 1956)

Any compact semi-group contains at least one idempotent. This theorem has been proved by some writers (cf. K. Iséki [2], Th. 3).

Let E be the set of all idempotents e_a of a given compact semi-group S, then E is non-empty.

If $e_{\alpha}e_{\beta}=e_{\alpha}$ for e_{α} , $e_{\beta} \in E$, we shall write $e_{\alpha} \leq e_{\beta}$. The order relation \leq defines a quasi-order on E. If E is commutative, then E is a partial order set relative to the order.

In this Note, we shall first extend a result of S. Schwarz [3]. We shall first prove that

$$\mathfrak{N} = \bigcap_{e_{\alpha} \in E} Se_{\alpha}S$$

is non-empty. By the compactness of S, each Se_aS is closed. For any finite $e_{a_1}, e_{a_2}, \dots, e_{a_k}$, we have

$$e_{\alpha_1} \cdot e_{\alpha_2} \cdots e_{\alpha_k} \in Se_{\alpha_1} S \cdot Se_{\alpha_2} S \cdots Se_{\alpha_k} S$$
$$\subseteq Se_{\alpha_1} S \frown Se_{\alpha_2} S \frown \cdots \frown Se_{\alpha_k} S.$$

Therefore, $Se_{a_1}S \frown Se_{a_2}S \frown \cdots \frown Se_{a_k}S$ is non-empty, and \mathfrak{N} is non-empty. It is clear that \mathfrak{N} is a closed two-sided ideal, and hence \mathfrak{N} is a compact semi-group. For $a \in \mathfrak{N}$, SaS is a closed ideal of \mathfrak{N} . The compact semi-group SaS contains an idempotent e. Therefore $SeS \subseteq SaS \subseteq \mathfrak{N} \subseteq SeS$. Hence $SaS = SeS = \mathfrak{N}$, for any a and any idempotent e of \mathfrak{N} . $\mathfrak{N} = SaS$ is a closed minimal two-sided ideal.

Thus, this fact shows that there is a closed minimal two-sided ideal in S.

If S is a compact homogroup in the sense of G. Thierrin [4], then S contains a compact group and two-sided ideal m of S. Therefore, $\mathfrak{N} \subset m$. As any group does not contain proper ideal, $\mathfrak{N}=m$. Therefore, \mathfrak{N} is a compact group. Hence \mathfrak{N} contains only one idempotent e, which is the unit element of \mathfrak{N} . Let e' be an idempotent of S, then, by the definition of \mathfrak{N} , $\mathfrak{N} \subseteq \mathfrak{N} e' \mathfrak{N} \subseteq \mathfrak{N}$. Hence $ee'e \in \mathfrak{N}$. Since S is a homogroup, e is permutable with any element of S. Hence ee'e=ee' and ee' is an idempotent. Therefore ee'=e and this shows $e \leq e'$. So we can state the following

Theorem 1. Any compact homogroup has a unique least idempotent.^{*)}

^{*)} Theorem 1 is proved without the assumption of compactness.

It is well known that any compact abelian semi-group is homogroup (see K. Iséki [1]).

Therefore, Theorem 1 implies the following

Theorem 2. Any compact abelian semi-group has a unique least idempotent.

Theorem 2 has been proved by S. Schwarz [3].

Let S be a topological semi-group, and $\chi(x)$ a continuous homomorphism of S into the multiplicative group of complex numbers of absolute value one: $\chi(a)\chi(b)=\chi(ab)$ and $|\chi(a)|=1$. Such a $\chi(x)$ is called a *character* of S.

Let e be an idempotent of S. Then

$$\chi(e) = \chi(e^2) = (\chi(e))^2$$

and hence

$$\chi(e)(\chi(e)-1)=0.$$

 $\chi(e)=1.$

Therefore, we have

Suppose that S is a topological homogroup. By a theorem of G. Thierrin [4], there is an idempotent
$$e$$
 such that $\mathfrak{N} = \{xe \mid x \in S\}$ is a group and two-sided ideal of S. \mathfrak{N} is called the group ideal of S. Let $n \in \mathfrak{N}$, then it is clear that $S = \bigcup_{n \in \mathfrak{N}} A_n$, where $A_n = \{x \mid xe = n\}$.

Let $\chi(x)$ be a character of S, and $a_n \in A_n$, then

$$a_n e = n$$

and

$$\chi(a_n)\chi(e) = \chi(n),$$

hence, we have $\chi(a_n) = \chi(n)$ by $\chi(e) = 1$. Therefore, $\chi(n)$ is a character of \mathfrak{N} . On the other hand, let $\chi(n)$ be a character of \mathfrak{N} . We shall define a character $\psi(x)$ of S by $\chi(n)$. For $a \in S$, we define

$$\psi(a) = \chi(ae), \qquad ae \in \mathfrak{N}.$$

Then it is clear that $|\psi(a)|=1$ and $\psi(a)\psi(b)=\chi(ae)\chi(be)=\chi(aebe)=\chi(abe)$ $=\psi(ab).$

To prove the continuity of $\psi(a)$, let ε be any positive number. Since $\chi(x)$ is continuous on \mathfrak{N} , we can find a neighbourhood U(ae) such that $U(ae) \frown \mathfrak{N} \ni x$ implies

$$|\chi(ae)-\chi(x)|<\varepsilon$$
.

For a neighbourhood U(a) such that $U(a)e \subset U(ae)$, $b \in U(a)$ implies

$$be \in U(a)e \subset U(ae)$$

and $be \in \mathfrak{N}$. Hence $be \in U(ae) \frown \mathfrak{N}$ and

$$|\psi(a)-\psi(b)| = |\chi(ae)-\chi(be)| < \varepsilon.$$

Therefore $\psi(a)$ is continuous on S.

Let \hat{S} denote the set of all characters of S. For χ, ψ of \hat{S} , the product $\chi\psi$ is defined as $\chi\psi(x)=\chi(x)\psi(x)$ for all $x \in S$. Then

No. 4]

 \hat{S} is a group. The result mentioned above shows that \hat{S} is isomorphic to the group of characters of \Re . Therefore, we have the following

Theorem 3. The set of all characters of a topological homogroup is isomorphic to the group of characters of group ideal of it.

Theorem 2 is a generalisation of a result by S. Schwarz [3]: the set of all characters of a compact abelian semi-group is isomorphic to the group of characters of maximal subgroup of it.

References

- [1] K. Iséki: On compact abelian semi-groups, Michigan Math. Jour., 2, 59-60 (1955).
- [2] K. Iséki: On compact semi-groups, Proc. Japan Acad., 32, 221-224 (1956).
- [3] S. Schwarz: Karakteri bikompaktnih polugrupp, Czechoslovak Math. Jour., 5 (80), 24–28 (1955).
- [4] G. Thierrin: Sur les homogroupes, C. R. Acad. Sci., Paris, 234, 1519-1521 (1952).