162. On Interpolations of Analytic Functions. I (Preliminaries)

By Tetsujiro Kakehashi
(Comm. by K. Kunugi, m.J.A., Dec. 13, 1956)

Walsh ${ }^{1)}$ has proved the following theorem: Let $f(z)$ be a function single valued and analytic within the circle $C_{\rho}:|z|=\rho>1$, but not analytic regular on C_{ρ}. Then the sequence of polynomials $P_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in all the zeros of polynomials $Z^{n+1}-1$ converges to $f(z)$ throughout the interior of the circle C_{p}, uniformly on any closed set interior to C_{ρ} and diverges at every points exterior to C_{ρ} as n tends to infinity. He has mentioned the possibility of a generalization of this theorem in his paper.

For the convergence of sequences of polynomials found by interpolations in sets of points which satisfy a certain condition, a complete result has been shown by Walsh, ${ }^{2)}$ but for the divergence, problems have been left unsolved.

For this divergence problem of such a sequence, a few works have been done by the author, ${ }^{3)-5)}$ but these results were not satisfactory. But soon afterwards a little satisfactory result has been obtained by the author: ${ }^{67}$

Let the sequence of points

$$
\left\{\begin{array}{l}
z_{1}^{(1)} \tag{P}\\
z_{1}^{(2)}, z_{2}^{(2)} \\
z_{1}^{(3)}, z_{2}^{(3)}, z_{3}^{(3)} \\
\cdots \cdots \cdots \\
z_{1}^{(n)}, z_{2}^{(n)}, z_{3}^{(n)}, \cdots, z_{n}^{(n)} \\
\ldots \ldots \ldots
\end{array}\right.
$$

which do not lie exterior to the unit circle $C:|z|=1$, satisfy the condition that the sequence of

[^0]$$
\frac{W_{n}(z)}{z^{n}}=\frac{\left(z-z_{1}^{(n)}\right)\left(z-z_{2}^{(n)}\right) \cdots\left(z-z_{n}^{(n)}\right)}{z^{n}}
$$
converges to a function $\lambda(z)$, single valued, analytic and non-vanishing for z exterior to C, and converges uniformly on any bounded closed points set exterior to C, that is
$$
\lim _{n \rightarrow \infty} \frac{W_{n}(z)}{z^{n}}=\lambda(z) \quad \text { for }|z|>1
$$

Let the function $f(z)$ be single valued and analytic throughout the interior of the circle $C_{\rho}:|z|=\rho>1$ but not analytic regular on C_{ρ}. Then the sequence of polynomials $P_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in all the zeros of $W_{n+1}(z)$ diverges at every point exterior to C_{p}. Moreover we have

$$
\varlimsup_{n \rightarrow \infty}\left|P_{n}(z ; f)\right|^{\frac{1}{n}}=\frac{|z|}{\rho} \quad \text { for }|z|>\rho .
$$

In this paper, we shall consider a generalization of the result above-mentioned, and treat some applications.

1. In this paragraph, we consider some properties of coefficients obtained in the case when an analytic function is expanded into Laurent's series (or power-series). Let $f(z)$ be a function single valued and analytic on the region between two circles $C_{\rho}:|z|=\rho$ and $C_{r}:|z|=r<\rho$, but not analytic regular on C_{ρ}. Then the function $f(z)$ can be expanded into Laurent's series

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} B_{n}\left(\frac{\rho}{z}\right)^{n}+\sum_{n=0}^{\infty} A_{n}\left(\frac{z}{\rho}\right)^{n} \tag{1}
\end{equation*}
$$

where coefficients A_{n} and B_{n} satisfy respectively

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|A_{n}\right|^{\frac{1}{n}}=1 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|B_{n}\right|^{\frac{1}{n}} \leqq \frac{r}{\rho}<1 . \tag{2}
\end{equation*}
$$

It has been proved by the author that the series (1) can be also represented ${ }^{6)}$ by

$$
\begin{equation*}
f(z)=\sum_{n=-\infty}^{\infty} a_{n} \lambda_{n}\left(\frac{z}{\rho}\right)^{n}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{n}=1 \quad \text { for } n=0,-1,-2, \cdots, \tag{4}
\end{equation*}
$$

a_{n} satisfy

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|a_{n}\right|=1, \quad \varlimsup_{n \rightarrow \infty}\left|a_{-n}\right|^{\frac{1}{n}} \leqq \frac{r}{\rho}<1 \tag{5}
\end{equation*}
$$

and λ_{n} satisfy

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}}=1 \tag{6}
\end{equation*}
$$

If we put $a_{n}=0: n=-1,-2, \cdots$ in the equation (3), we can consider the case when the function $f(z)$ is single valued and analytic throughout the interior of the circle C_{ρ}.

Next we consider several lemmas which show some properties of Laurent's series.

Lemma 1. Let $f(z)=\sum_{n=-\infty}^{\infty} a_{n} \lambda_{n}\left(\frac{z}{\rho}\right)^{n}$ be the function which satisfies the conditions (4), (5) and (6), and $\varphi(z)$ be a function single valued, analytic and non-vanishing on $C_{\rho}:|z|=\rho$. If we put

$$
\begin{equation*}
f(z) \varphi(z)=\sum_{n=-\infty}^{\infty} \gamma_{n}\left(\frac{z}{\rho}\right)^{n} \tag{7}
\end{equation*}
$$

the upper limit of $\frac{\left|\gamma_{n}\right|}{\lambda_{n}}$ is bounded and positive, that is, we have

$$
\begin{equation*}
\infty>\varlimsup_{n \rightarrow \infty} \frac{\left|\gamma_{n}\right|}{\lambda_{n}}>0 . \tag{8}
\end{equation*}
$$

If we put

$$
\varphi(z) \equiv \sum_{n=-\infty}^{\infty} \alpha_{n}\left(\frac{z}{\rho}\right)^{n},
$$

we have

$$
\gamma_{n}=\sum_{p=-\infty}^{\infty} a_{p} \lambda_{p} \alpha_{n-p}
$$

and

$$
\overline{\lim }_{p \rightarrow \infty}\left|\alpha_{ \pm p}\right|^{\frac{1}{p}} \leqq R<1,
$$

where R is a positive number less than unity determined by the situation of singularities of $\varphi(z)$. For any two integers n and p, and for any positive number δ, we can verify by the condition of λ_{n} and a_{n} that there exist two positive numbers A and B, independent of δ, n and p, which satisfy

$$
\left|\frac{a_{p} \lambda_{p}}{\lambda_{n}}\right| \leqq A(1+\delta)^{|p-n|}
$$

and

$$
\left|\alpha_{n}\right| \leqq B(R+\delta)^{|n|} .
$$

Accordingly, we have the following relations:

$$
\begin{aligned}
\frac{\left|\gamma_{n}\right|}{\lambda_{n}} & =\frac{\left|\sum_{p=-\infty}^{\infty} a_{p} \lambda_{p} \alpha_{n-p}\right|}{\lambda_{n}} \\
& \leqq\left|\sum_{p=0}^{\infty} \frac{a_{p} \lambda_{p}}{\lambda_{n}} \alpha_{n-p}\right|+\left|\sum_{p=1}^{\infty} \frac{a_{-p} \lambda_{-p}}{\lambda_{n}} \alpha_{n+p}\right| \\
& \leqq A B \sum_{p=0}^{\infty}(1+\delta)^{|n-p|}(R+\delta)^{|n-p|}+A B \sum_{p=1}^{\infty}(1+\delta)^{|n+p|}(R+\delta)^{|n+p|} \\
& \leqq 2 A B \sum_{p=0}^{\infty}(1+\delta)^{p}(R+\delta)^{p} .
\end{aligned}
$$

The last side is convergent for δ sufficiently small by the condition $R<1$. Hence we can verify that $\frac{\left|\gamma_{n}\right|}{\lambda_{n}}$ are uniformly bounded for any integer n. Then the relation $\lim _{n \rightarrow \infty} \frac{\left|\gamma_{n}\right|}{\lambda_{n}}<\infty$ follows at once.

Next we shall prove the relation $\lim _{n \rightarrow \infty} \frac{\left|\gamma_{n}\right|}{\lambda_{n}}>0$. If we put

$$
\frac{1}{\varphi(z)} \equiv \sum_{n=-\infty}^{\infty} \beta_{n}\left(\frac{z}{\rho}\right)^{n}
$$

which is single valued and analytic on C_{ρ}, we have

$$
\varlimsup_{i m}\left|\beta_{n}\right|^{\frac{1}{n}}<1 \quad \text { and } \quad \varlimsup_{n \rightarrow \infty}\left|\beta_{-n}\right|^{\frac{1}{n}}<1 .
$$

From the equation

$$
f(z)=\frac{f(z) \varphi(z)}{\varphi(z)}=\sum_{n=-\infty}^{\infty} a_{n} \lambda_{n}\left(\frac{z}{\rho}\right)^{n}=\sum_{n=-\infty}^{\infty}\left(\sum_{p=-\infty}^{\infty} \gamma_{n-p} \beta_{p}\right)\left(\frac{z}{\rho}\right)^{n},
$$

we have

$$
a_{n}=\frac{1}{\lambda_{n}} \sum_{p=-\infty}^{\infty} \gamma_{n-p} \beta_{p}=\sum_{p=-\infty}^{\infty} \frac{\lambda_{n-p}}{\lambda_{n}} \frac{\gamma_{n-p}}{\lambda_{n-p}} \beta_{p}
$$

where $\lambda_{k}=1$ for $k \leqq 0$.
If we assume $\lim _{n \rightarrow \infty} \frac{\gamma_{n}}{\lambda_{n}}=0, \max _{-\infty<n<\infty} \frac{\left|\gamma_{n}\right|}{\lambda_{n}} \equiv M$ exists for any integer (positive or negative) n. For any two integers n and p, and for any positive number δ, we can verify that there exists a positive number K, independent of n, p and δ, which satisfies

$$
\begin{equation*}
\frac{\lambda_{n-p}}{\lambda_{n}} \leqq K(1+\delta)^{|p|} \tag{9}
\end{equation*}
$$

Accordingly, we have

$$
\begin{aligned}
\left|a_{n}\right|= & \left|\sum_{p=-\infty}^{\infty} \frac{\lambda_{n-p}}{\lambda_{n}} \frac{\gamma_{n-p}}{\lambda_{n-p}} \beta_{p}\right| \\
\leqq & \left.\max _{p \leq 0} \frac{\left|\gamma_{n-p}\right|}{\lambda_{n-p}} \sum_{p=-\infty}^{0} \frac{\lambda_{n-p}}{\lambda_{n}}\left|\beta_{p}\right|+\max _{1 \leq p \leq m} \frac{\left|\gamma_{n-p}\right|}{\lambda_{n-p}} \sum_{p=1}^{m} \frac{\lambda_{n-p}}{\lambda_{n}} \beta_{p} \right\rvert\, \\
& +M \sum_{p=m+1}^{\infty} \frac{\lambda_{n-p}}{\lambda_{n}}\left|\beta_{p}\right| \\
\leqq & K \max _{q \geq 0} \cdot \frac{\left|\gamma_{n+q}\right|}{\lambda_{n+q}} \sum_{q=0}^{\infty}\left|\beta_{-q}\right|(1+\delta)^{q}+K \max _{1 \leq p \leq m} \frac{\left|\gamma_{n-p}\right|}{\lambda_{n-p}} \sum_{p=1}^{m}(1+\delta)^{p}\left|\beta_{p}\right| \\
& +K M \sum_{p=m+1}^{\infty}\left|\beta_{p}\right|(1+\delta)^{p},
\end{aligned}
$$

where we can choose a positive number δ such that $\overline{\lim }_{n \rightarrow \infty}\left|\beta_{ \pm n}\right|^{\frac{1}{n}}<\frac{1}{1+\delta}$.
For any positive number ε, if we take m sufficiently large, the last term becomes less than $\frac{\varepsilon}{3}$. And for a fixed number m, if we take n sufficiently large, the first and the second terms become respectively less than $\frac{\varepsilon}{3}$ by the assumption $\lim _{n \rightarrow \infty} \frac{\gamma_{n}}{\lambda_{n}}=0$. Hence we have $\lim _{n \rightarrow \infty} a_{n}=0$ which contradicts the assumption $\varlimsup_{n \rightarrow \infty}\left|a_{n}\right|=1$. Thus the lemma is established.

Lemma 2. Let $f(z)=\sum_{n=-\infty}^{\infty} a_{n} \lambda_{n}\left(\frac{z}{\rho}\right)^{n}$ be the function which satisfies (4), (5) and (6), and $\varphi_{n}(z) ; n=1,2, \cdots$ be a sequence of functions, single valued and analytic on a closed domain G which contains the
circle C_{p} in its interior, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi_{n}(z)=0 \quad \text { uniformly on the domain } G . \tag{10}
\end{equation*}
$$

If we put

$$
\begin{equation*}
f(z) \varphi_{n}(z)=\sum_{k=-\infty}^{\infty} \gamma_{k}^{(n)}\left(\frac{z}{\rho}\right)^{k} . \tag{11}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\gamma_{n}^{(n)}}{\lambda_{n}}=0 . \tag{12}
\end{equation*}
$$

If we put

$$
\varphi_{n}(z)=\sum_{k=-\infty}^{\infty} \alpha_{k}^{(n)}\left(\frac{z}{\rho}\right)^{k},
$$

we can choose a positive number δ_{0} such that $\varphi_{n}(z)$ are single valued and analytic on and between two circles $C_{\left(1+\delta_{0}\right) \rho}:|z|=\left(1+\delta_{0}\right) \rho$ and $C_{\left(1+\delta_{0}\right)-1_{p}}:|z|=\frac{\rho}{1+\delta_{0}}$, and we have

$$
\begin{aligned}
& \alpha_{k}^{(n)}=\frac{\rho^{k}}{2 \pi i} \int_{c_{\left(1+\delta_{0}\right) p}} \varphi_{n}(t) t^{-k-1} d t ; \quad k=0,1,2, \cdots, \\
& \alpha_{k}^{(n)}=\frac{\rho^{k}}{2 \pi i} \int_{c_{\left(1+\delta_{0}\right)-1_{\rho}}} \varphi_{n}(t) t^{-k-1} d t ; \quad k=-1,-2, \cdots .
\end{aligned}
$$

Accordingly, we can verify that, for any integer k, the relation

$$
\begin{equation*}
\left|\alpha_{k}^{(n)}\right| \leqq M_{n}\left(1+\delta_{0}\right)^{-k} \tag{13}
\end{equation*}
$$

holds for any integer n, where M_{n} can be allowed to approach zero as n tends to infinity.

From the equation

$$
\gamma_{n}^{(n)}=\sum_{p=-\infty}^{\infty} a_{p} \lambda_{p} \alpha_{n-p}^{(n)},
$$

we have

$$
\begin{aligned}
\frac{\gamma_{n}^{(n)}}{\lambda_{n}} & =\sum_{p=-\infty}^{\infty} a_{p} \frac{\lambda_{p}}{\lambda_{n}} \alpha_{n-p}^{(n)}=\sum_{q=-\infty}^{\infty} \alpha_{n-q} \frac{\lambda_{n-q}}{\lambda_{n}} \alpha_{q}^{(n)} \\
& =\sum_{q=0}^{\infty} a_{n+q} \frac{\lambda_{n+q}}{\lambda_{n}} \alpha_{-q}^{(n)}+\sum_{q=1}^{\infty} a_{n-q} \frac{\lambda_{n-q}}{\lambda_{n}} \alpha_{q}^{(n)} .
\end{aligned}
$$

For any positive number δ less than δ_{0}, if we put $M \equiv \max \left|\alpha_{n}\right|$, we have

$$
\frac{\left|\gamma_{n}^{(n)}\right|}{\lambda_{n}} \leqq M K M_{n} \sum_{q=0}^{\infty}\left(\frac{1+\delta}{1+\delta_{0}}\right)^{q}+M K M_{n} \sum_{q=1}^{\infty}\left(\frac{1+\delta}{1+\delta_{0}}\right)^{q}
$$

by (9) and (13), where M and K are respectively independent of δ, δ_{0}, n and q. And as M_{n} can be allowed to approach zero, $\frac{\gamma_{n}^{(n)}}{\lambda_{n}}$ clearly tends to zero as n tends to infinity. Thus the lemma is established.

The following lemma follows at once from Lemmas 1 and 2.
Lemma 3. Let $f(z)=\sum_{n=-\infty}^{\infty} a_{n} \lambda_{n}\left(\frac{z}{\rho}\right)^{n}$ be the function which satisfies (4), (5) and (6), and $\varphi_{n}(z): n=1,2, \cdots$ be the sequence of functions,
single valued and analytic on C_{p}, such that
(14) $\quad \lim _{n \rightarrow \infty} \varphi_{n}(z)=\varphi(z) \quad$ (non-vanishing on C_{p}) uniformly on a closed domain which contains the circle C_{ρ} in its interior. If we put

$$
\begin{equation*}
f(z) \varphi(z)=\sum_{k=-\infty}^{\infty} \boldsymbol{\gamma}_{k}^{(n)}\left(\frac{z}{\rho}\right)^{k}, \tag{15}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\infty>\lim _{n \rightarrow \infty} \frac{\left|\gamma_{n}^{(n)}\right|}{\lambda_{n}}>0 . \tag{16}
\end{equation*}
$$

[^0]: 1) J. L. Walsh: The divergence of sequences of polynomials interpolating in roots of unity, Bulletin Am. Math. Soc., 12, 715 (1936).
 2) J. L. Walsh: Interpolation and approximation, Am. Math. Soc. Coll. Publ., 20 (1935).
 3) T. Kakehashi: On the convergence-region of interpolation polynomials, Jour. Math. Soc. Japan, 7, 32 (1955).
 4) T. Kakehashi: The divergence of interpolations. I-III, Proc. Japan Acad., 30, Nos. 8,9,10 (1954).
 5) T. Kakehashi: Integrations on the circle of convergence and the divergence of interpolations. I, Proc. Japan Acad., 31, No. 6, 329 (1955).
 6) T. Kakehashi: The decomposition of coefficients of power-series and the divergence of interpolation polynomials, Proc. Japan Acad., 31, No. 8, 517 (1955).
