21. A Note on Homotopy Classification and Extension

By Yoshiro INOUE

(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1957)

1. Let Y be a topological space such that

 $\pi_i(Y) = 0$ for $0 \le i < n$, n < i < q, q < i < r (n > 1).

When r < 2q-1, K. Mizuno has studied the obstruction and the classification theorems for mappings of a geometric complex into Y along the line of Eilenberg-MacLane [1]. Our purpose of this note is to generalize these theorems for the case where $r \ge 2q-1$. This paper makes full use the notations of the paper by K. Mizuno [3].

2. Let Π and Π' be abelian groups. For a given cocycle $k \in \mathbb{Z}^{q+1}$ $(\Pi, n; \Pi')$, let $K(\Pi, n, \Pi', q; k)$ be the complex defined in the paper [2]. Let (K, L_i) , $i=0, 1, \dots, r \ge 0$, be c.s.s. pairs. Denote by D the subcomplex of $K(\Pi, n, \Pi', q; k)$ generated by all $(1_{p,n}, 1_{p,q})$. As was shown by K. Mizuno [3], a mapping $T: (K, L_0) \to (K(\Pi, n, \Pi', q; k), D)$ is characterized by a cocycle and a cochain

> $x_n = T^{\#}b_n \in Z^n(K, L_0; \Pi), \quad c_q = T^{\#}b_q \in C^q(K, L_0; \Pi')$ to $kT(x_1) + \delta c = 0$ [3 p 56] The map T correspondence

subject to $kT(x_n)+\delta c_q=0$ [3, p. 56]. The map T corresponding in this fashion to the pair (x_n, c_q) will be denoted by $T(x_n, c_q)$. Given r-cocycles $x_{q_i} \in Z^{q_i}(K, L_i; \Pi')$ with $q_i \leq q$, $i=1, \dots, r$, we shall define a chain mapping

$$R_{n,q}(x_n, c_q; x_{q_1}, \cdots, x_{q_r}) : (K, L) \to K(\Pi, n, \Pi', q; k)$$

of degree $s = \sum_{i=1}^{r} (q-q_i)$ which is called the defect, where $L = \bigcup_{i=0}^{r} L_i$. The map $R_{r,q}$ is defined as the composite of the maps displayed in the following main diagram:

Y. INOUE

Here, the first map e is the diagonal map. The second map f is the standard map of the Cartesian product into the tensor product. The third map is the tensor product of the FD-maps $R(X_n, c) = T(x_n, c) - T(0, 0)$ and $R(x_{q_i}) = T(x_{q_i}) - T(0)$, $i=1, \dots, r$, while the fourth map is the tensor product of the suspensions. The fifth map g is the standard map of the tensor into the Cartesian product. Finally, the map γ is defined by

$$\gamma((\phi, \psi) \times \psi_1 \times \cdots \times \psi_r) = (\phi, \psi \circ \psi_1 \circ \cdots \circ \psi_r),$$

where

$$\psi \circ \psi_1 \circ \cdots \circ \psi_r(\beta) = \psi(\beta) + \psi_1(\beta) + \cdots + \psi_r(\beta),$$

for arbitrary appropriate dimensional map β .

3. Let G be an abelian group and let $y \in H^t(\Pi, n, \Pi', q, k; G)$ be a cohomology class. Let X_{q_i} be the cohomology class of x_{q_i} . We shall define the \cap -operation $y_{\cap}(x_n, c; X_{q_1}, \dots, X_{q_r})$ by

$$y_{\cap}(x_n, c; X_{q_1}, \cdots, X_{q_r}) = R_{n,q}(x_n, c; x_{q_1}, \cdots, x_{q_r})^* y_{\eta}$$

where $R_{n,q}(x_n, c; x_{q_1}, \cdots, x_{q_r})^* : H^t(\Pi, n, \Pi', q, k; G) \to H^{t-s}(K, L; G)$ is the homomorphism induced by $R_{n,q}(x_n, c; x_{q_1}, \cdots, x_{q_r})$.

Lemma 1. Let (K', L'_i) , $i=0, 1, \dots, r$, be c.s.s. pairs. If $U_i:(K', L'_i) \rightarrow (K, L_i)$ are simplicial maps which agree on K' and thus determine a simplicial map $U:(K', L') \rightarrow (K, L)$, $L' = \bigcup_{i=0}^r L'_i$, then

 $U^*[y_{\cap}(x_n,c;X_{q_1},\cdots,X_{q_r})] = y_{\cap}(U_0^{\#}x_n,U_0^{\#}c;U_1^{*}X_{q_1},\cdots,U_r^{*}X_{q_r}).$

Lemma 2. Let (K, L, M) be a c.s.s. triple. Given a simplicial map $T(x_n, c): (K, M) \rightarrow (K(\Pi, n, \Pi', q; k), D)$, cohomology classes $X_{q_i} \in H^{q_i}$ $(K, M; \Pi'), q_i \leq q, i=1, \cdots, r, X_m \in H^m(L, M; \Pi'), m < q \text{ and } y \in H^{\iota}(\Pi, n, \Pi', q, k; G)$, we have

$$y_{\cap}(x_{n}, c; X_{q_{1}}, \cdots, X_{q_{j}}, \delta X_{m}, X_{q_{j+1}}, \cdots, X_{q_{r}}) \\ = \mathcal{O}(\sum_{i>j} (q-q_{i}))\delta[y_{\cap}(i^{\#}x_{n}, i^{\#}c; i^{*}X_{q_{1}}, \cdots, i^{*}X_{q_{j}}, X_{m}, i^{*}X_{q_{j+1}}, \cdots, i^{*}X_{q_{r}})] \\ \in H^{t-s}(K, L; G)$$

where $s = \sum_{i=1}^{r} (q-q_i) + (q-m-1)$, $\mathcal{O}(a) = (-1)^a$, $\delta X_m \in H^{m+1}(K, L; \Pi')$ and $i: (L, M) \to (K, M)$ is the inclusion map.

4. Let Y be a topological space such that

 $\pi_i(Y) = 0$ for i < n, n < i < q, q < i < r, 1 < n.

For the sake of brevity, we write, in the following, $\pi_n = \pi_n(Y)$, $\pi_q = \pi_q(Y)$ and $\pi_r = \pi_r(Y)$. Let $k_n^{q+1} \in Z^{q+1}(\Pi, n; \Pi')$ be the Eilenberg-MacLane invariant of Y. Then, the operation $y_{\cap}(x_n, c; X_{q_1}, \dots, X_{q_r})$ is defined by using the complex $K(\pi_n, n, \pi_q, q; k_n^{q+1})$. Let $k_{n,q}^{r+1} \in Z^{r+1}(\pi_n, n, \pi_q, q; k_n^{q+1})$. Let $k_{n,q}^{r+1} \in Z^{r+1}(\pi_n, n, \pi_q, q; k_n^{q+1})$. Let $k_{n,q}^{r+1} \in Z^{r+1}(\pi_q, q; \pi_r)$ be the cocycles defined in § 6 of [3]. Let $\Re_{n,q}^{r+1}$ and \Re_q^{r+1} be the cohomology classes of $k_{n,q}^{r+1}$ and k_q^{r+1} .

Let K be a geometric complex. A map $f: K^n \to Y$ determines a cochain $a_f^n \in C^n(K, \pi_n)$ defined by the standard manner. The cochain a_f^n is a cocycle if and only if the map f admits an extension $f_q: K^q \to Y$

which presents an obstruction cocycle $c^{q+1}(f_q) \in Z^{q+1}(K, \pi_q)$ which is represented by

$$e^{q+1}(f_q) = k_n^{q+1}T(a_f^n) + \delta(l^q f_q).$$

This obstruction $c^{q+1}(f_q)$ is zero if and only if the map f_q admits an extension $f_r: K^r \to Y$ which presents an obstruction cocycle $c^{r+1}(f_r) \in Z^{r+1}(K, \pi_r)$ and

$$c^{r+1}(f_r) = k_{n,q}^{r+1}T(a_f^n, l^q f_q) + \delta(l^r f_r)$$
 [3, Lemma 7.1].

Let L be a subcomplex of K and let $f: L \to Y$ be a map extendible to a map $f': K^{r\cup}L \to Y$. The cohomology class $Z^{r+1}(f')$ of the obstruction cocycle $c^{r+1}(f_r)$ depends on the choice of the extension $f' | K^{q \cup}L$ of f.

Lemma 3. Let $f_1, f_2: K^{q \cup}L \to Y$ be two extensions of the map $f: K^{n \cup}L \to Y$, and which are extendible to $K^{q+1 \cup}L \to Y$. Then,

$$\begin{split} & \pmb{Z}^{r+1}(f_1) - \pmb{Z}^{r+1}(f_2) = \Re_{n,q}^{r+1} (a_f^n, l^q f_2; \pmb{a}^q(f_1, f_2)) + \Re_q^{r+1} \vdash \pmb{a}^q(f_1, f_2), \\ where \ \ \pmb{a}^q(f_1, f_2) \in H^q(K, L; \pi_q) \ is \ the \ cohomology \ class \ of \ the \ cocycle \ l^q f_1 - l^q f_2. \end{split}$$

Theorem 1. Let $f: K^{n\cup}L \to Y$ and let $g: K^{r\cup}L \to Y$ be an extension of f. Then, the map f admits an extension $f': K^{r+1\cup}L \to Y$ if and only if there is an element

$$oldsymbol{e}^q \in H^q(K,L;\pi_q)$$

such that

$$\boldsymbol{Z}^{r+1}(g) + \Re_{n,q}^{r+1}(a_r^n, l^q g; \boldsymbol{e}^q) + \Re_q^{r+1} \vdash \boldsymbol{e}^q = 0.$$

Theorem 2. Let L be a subcomplex of K such that dim. $(K-L) \leq r$, let $f_0, f_1: K \rightarrow Y$ be two maps which agree on $K^{r-1} \cup L$ and let $d^r(f_0, f_1)$ be their difference cocycle. Then, $f_0 \simeq f_1$ rel. L, if and only if there exists a cohomology class

$$e^{q-1} \in H^{q-1}(K, L; \pi_q)$$

such that

$$\boldsymbol{d}^{r}(f_{0},f_{1}) + \Re_{n,q}^{r+1} \cap (a_{f_{0}}^{n},l^{q}f_{0};\boldsymbol{e}^{q-1}) + \Re_{q}^{r+1} \vdash \boldsymbol{e}^{q-1} = 0,$$

where $d^r(f_0, f_1)$ is the cohomology class of $d^r(f_0, f_1)$.

References

- S. Eilenberg and S. MacLane: On the groups H(Π, n), III, Ann. Math., 60, 513-557 (1954).
- [2] K. Mizuno: On the minimal complexes, Jour. Inst. Polytech., Osaka City Univ., 5, 41-51 (1954).
- [3] —: On homotopy classification and extension, Jour. Inst. Polytech., Osaka City Univ., 6, 55-69 (1955).