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20. Analytic Functions in the Neighbourhood of
the Ideal Boundary
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Mathematical Institute, Hokkaidd University
(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1957)

Let R be a Riemann surface with null-boundary and let {R,}
be its exhaustion with compact relative boundary. We proved the
following

Theorem 1.Y Let R’ be a subsurface of R with compact relative
boundary. Let f(z) be a bounded analytic function on R'. Then f(z)
has a limit as z tends to an ideal boundary component of R'.

We extend this theorem to more general class of Riemann surfaces.
Let R be a Riemann surface with positive boundary and let R’ be a
subsurface of R with compact relative boundary I". We introduce
two classes of Riemann surfaces.

There exists no non-constant one valued bounded (Dirichlet bounded)
harmonic function U(z) on R’ such that U(2)=0 on I, the period of
the conjugate function of U(z) vanishes along every dividing cut of
R. We say ReO); and €0, respectively. 0, and O, are the
extension of the classes of O,, and O,, of the Riemann surface of
finite genus. We see easily that the property €0, (¢0/,) is the one
depending only on the ideal boundary.

Theorem 2. Suppose a bounded (Dirichlet bounded) analytic func-
tion on R'€0);(0)p). Then f(2) has a limit as z tends to a boundary
component of R'.

To prove Theorem 2 we make some preparations.

Let R be a Riemann surface with positive boundary and let {R,}
(n=0,1,2,- - ) be its exhaustion with compact relative boundary {OR,}.
Let N(z2,p):peR be a positive harmonic function in R—R, such
that N(z,p)=0 on 9R,, N(z, p) has a logarithmic singularity at p and
N(z, p) has the minimal *-Dirichlet integral.”? Let {p;} be a sequence
tending to the ideal boundary of R such that {N(z, »,)} converges
uniformly in every compact domain of R. We say that {p,} is a
fundamental sequence determining an ideal boundary point and we
make 1@11’2 N(z,p;) correspond to this ideal boundary point. Denote

by B the ideal boundary point. The distance between points p, and
p, of R—R,+ B is defined by
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Then R—R,+B and B are closed and compact. We defined in the
previous paper® minimal point, singular minimal point. Then we
have the following

Lemma 1. Let p be a singular minimal point and let v(p) be a
netghbourhood with respect to 8-metric. Then there exists mo Dirichlet
bounded analytic functions on v(p).

Lemma 2. Suppose R ¢0',,. Then R’ has no boundary component
of positive capacity.”

In fact, assume that p is a boundary component of positive capaci-
ty. Then we can construct easily a harmonic function U(2) such that
U()=0 on I, D(U(z))<c and the conjugate of U(z) has no period
along every dividing cut.

Lemma 8. Let U,2) be a harmonic function on R’ such that

U,()=Real part of f(z) on I' and ?g’i(g)=0 on OR,. Then U,?)
n

converges to a harmonic function U*(2) in mean and moreover the
conjugate of U(2) has no period along every dividing cut, whence
U(z)=Re f(z). We say such U(2) a x-harmonic function. Then we
have

Lemma 4. Every x-harmonic function satisfies the maximum and
minimum principle.

We denote by B the all ideal boundary components of R. We
compactify R by adding B to R and introduce usually a topology on
R+B. Then R+B and B are closed and compact. We call this
topology A-topology.

Lemma 5. Let F be a closed subset of R'+B of capacity zero
with respect to A-topology. Then there exists a positive harmonic
Junction V(2) on R’ such that V(2)=0 on I', V(2)—>w as z tends to
F, V()< as 2z tends to a point ¢F and V,(2)=V(z), where V()
is @ harmonic function such that V,(2)=0 on I', V,(2)=M on Cy=
E[zeR:V(2)=M] and has the minimal Dirichlet integral on the
domain bounded by I' and C,. Hence f @K(@_"ds e f aVﬁﬁds Sor

o on g, on
every 0<M < co and f V() ds= f QY—(—@Ads Jor every M&E such
Cu on . on
that mes E=0.

Remark. In the previous paper® we proved Lemma 5 under the
condition that F' is closed in §-metric and FeR-+B,, where B, is
the set of minimal points. In this case, the above conditions are not

3)-5) See 2).
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necessary.

Proof of Theorem 2. Suppose Re O/, and D(f(z))< . We denote
by G, the domain containing a subset of B and bounded by compact
or non compact curves y,. Denote by f(y,) the image of v, by f(z).
Then by Lemma 4 G,C G, implies that f(G,) is contained in f(G)).
Let » be a boundary component of R’. Apply Lemma 5 to p. Then
D(f(z))<  implies the existence of a sequence of curves {y;} such
that f(G,) is contained in f(y,) and the length of f(y;) tends to zero

as ¢ tends to . Hence f(2) tends to a point ﬁf (G).°
i=1

Next suppose ReOQ,, and [f(z)|<M. We can suppose without
loss of generality that f(2) is analytic on I'. Consider U(z)=Re f(2)
and U(z) has the minimal Dirichlet integral. Then U(z)=Re f(2)

and D(U(2) = f UG) _@g;@ ds, which implies D(f(2))<co. On the
I
other hand, we can easily prove 0/,,C 0/, by the same method to

prove O,,C0,, for Riemann surface of genus O. Hence | f(z)|<M

and R' €0, imply D(f(2))<c and R'e€0;. Thus we have Theorem
2.




