20. Analytic Functions in the Neighbourhood of the Ideal Boundary

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaidô University (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1957)

Let R be a Riemann surface with null-boundary and let $\{R_n\}$ be its exhaustion with compact relative boundary. We proved the following

Theorem 1.¹⁾ Let R' be a subsurface of R with compact relative boundary. Let f(z) be a bounded analytic function on R'. Then f(z)has a limit as z tends to an ideal boundary component of R'.

We extend this theorem to more general class of Riemann surfaces. Let R be a Riemann surface with positive boundary and let R' be a subsurface of R with compact relative boundary Γ . We introduce two classes of Riemann surfaces.

There exists no non-constant one valued bounded (Dirichlet bounded) harmonic function U(z) on R' such that U(z)=0 on Γ , the period of the conjugate function of U(z) vanishes along every dividing cut of R. We say $R \in O'_{AB}$ and $\in O'_{AD}$ respectively. O'_{AB} and O'_{AD} are the extension of the classes of O_{AB} and O_{AD} of the Riemann surface of finite genus. We see easily that the property $\in O'_{AB}$ ($\in O'_{AD}$) is the one depending only on the ideal boundary.

Theorem 2. Suppose a bounded (Dirichlet bounded) analytic function on $R' \in O'_{AB}(O'_{AD})$. Then f(z) has a limit as z tends to a boundary component of R'.

To prove Theorem 2 we make some preparations.

Let R be a Riemann surface with positive boundary and let $\{R_n\}$ $(n=0,1,2,\cdots)$ be its exhaustion with compact relative boundary $\{\partial R_n\}$. Let $N(z,p): p \in R$ be a positive harmonic function in $R-R_0$ such that N(z,p)=0 on ∂R_0 , N(z,p) has a logarithmic singularity at p and N(z,p) has the minimal *-Dirichlet integral.²⁾ Let $\{p_i\}$ be a sequence tending to the ideal boundary of R such that $\{N(z,p_i)\}$ converges uniformly in every compact domain of R. We say that $\{p_i\}$ is a fundamental sequence determining an ideal boundary point and we make $\lim_{i\to\infty} N(z,p_i)$ correspond to this ideal boundary point. Denote by B the ideal boundary point. The distance between points p_1 and p_2 of $R-R_0+B$ is defined by

1) Z. Kuramochi: Potential theory and its applications, I, Osaka Math., 3 (1951).

²⁾ Z. Kuramochi: Mass distributions on the ideal boundaries of abstract Riemann surfaces, II, Osaka Math., 8 (1956).

No. 2] Analytic Functions in the Neighbourhood of the Ideal Boundary

$$\delta(p_1, p_2) = \sup_{z \in R_1 - R_0} \left| \frac{N(z, p_1)}{1 + N(z, p_1)} - \frac{N(z, p_2)}{1 + N(z, p_2)} \right|.$$

Then $R-R_1+B$ and B are closed and compact. We defined in the previous paper³⁾ minimal point, singular minimal point. Then we have the following

Lemma 1. Let p be a singular minimal point and let $\upsilon(p)$ be a neighbourhood with respect to δ -metric. Then there exists no Dirichlet bounded analytic functions on $\upsilon(p)$.

Lemma 2. Suppose $R' \in O'_{AD}$. Then R' has no boundary component of positive capacity.⁴⁾

In fact, assume that p is a boundary component of positive capacity. Then we can construct easily a harmonic function U(z) such that U(z)=0 on Γ , $D(U(z))<\infty$ and the conjugate of U(z) has no period along every dividing cut.

Lemma 3. Let $U_n(z)$ be a harmonic function on R' such that $U_n(z) = Real$ part of f(z) on Γ and $\frac{\partial U_n(z)}{\partial n} = 0$ on ∂R_n . Then $U_n(z)$ converges to a harmonic function $U^*(z)$ in mean and moreover the conjugate of U(z) has no period along every dividing cut, whence $U(z) \equiv Re f(z)$. We say such U(z) a *-harmonic function. Then we have

Lemma 4. Every *-harmonic function satisfies the maximum and minimum principle.

We denote by <u>B</u> the all ideal boundary components of R. We compactify R by adding <u>B</u> to R and introduce usually a topology on $R+\underline{B}$. Then $R+\underline{B}$ and <u>B</u> are closed and compact. We call this topology A-topology.

Lemma 5. Let F be a closed subset of R'+B of capacity zero with respect to A-topology. Then there exists a positive harmonic function V(z) on R' such that V(z)=0 on Γ , $V(z)\to\infty$ as z tends to F, $V(z)<\infty$ as z tends to a point $\notin F$ and $V_M(z)=V(z)$, where $V_M(z)$ is a harmonic function such that $V_M(z)=0$ on Γ , $V_M(z)=M$ on $C_M=E[z\in R:V(z)=M]$ and has the minimal Dirichlet integral on the domain bounded by Γ and C_M . Hence $\int_{C_M} \frac{\partial V(z)}{\partial n} ds \leq \int_{\Gamma} \frac{\partial V(z)}{\partial n} ds$ for every $0 < M < \infty$ and $\int_{C_M} \frac{\partial V(z)}{\partial n} ds = \int_{\Gamma} \frac{\partial V(z)}{\partial n} ds$ for every $M \notin E$ such that mes E=0.

Remark. In the previous paper⁵⁾ we proved Lemma 5 under the condition that F is closed in δ -metric and $F \in R + B_1$, where B_1 is the set of minimal points. In this case, the above conditions are not

³⁾⁻⁵⁾ See 2).

necessary.

Proof of Theorem 2. Suppose $R \in O'_{AD}$ and $D(f(z)) < \infty$. We denote by G_i the domain containing a subset of \underline{B} and bounded by compact or non compact curves γ_i . Denote by $f(\gamma_i)$ the image of γ_i by f(z). Then by Lemma 4 $G_i \subset G_j$ implies that $f(G_i)$ is contained in $f(G_j)$. Let p be a boundary component of R'. Apply Lemma 5 to p. Then $D(f(z)) < \infty$ implies the existence of a sequence of curves $\{\gamma_i\}$ such that $f(G_i)$ is contained in $f(\gamma_i)$ and the length of $f(\gamma_i)$ tends to zero as i tends to ∞ . Hence f(z) tends to a point $\prod f(G_i)$.⁶⁾

Next suppose $R \in O'_{AB}$ and |f(z)| < M. We can suppose without loss of generality that f(z) is analytic on Γ . Consider $U(z) = \operatorname{Re} f(z)$ and U(z) has the minimal Dirichlet integral. Then $U(z) \equiv \operatorname{Re} f(z)$ and $D(U(z)) = \int_{\Gamma} U(z) \frac{\partial U(z)}{\partial n} ds$, which implies $D(f(z)) < \infty$. On the other hand, we can easily prove $O'_{AB} \subset O'_{AD}$ by the same method to prove $O_{AB} \subset O_{AD}$ for Riemann surface of genus O. Hence |f(z)| < Mand $R' \in O'_{AB}$ imply $D(f(z)) < \infty$ and $R' \in O'_{AB}$. Thus we have Theorem 2.