14. On ξ -Rings

By Yuzo UTUMI Osaka Women's University (Comm. by K. ShoDA, M.J.A., Feb. 12, 1957)

By a ξ -ring¹⁾ we mean a ring in which for every element x there exists an element f(x) such that $x - x^2 f(x)$ is central. Of course, every strongly regular ring²⁾ is a ξ -ring. Besides, Herstein [5] treated a special type of ξ -rings for which f(x) is a polynomial of x with integral coefficients.

A fundamental property of ξ -rings is that every nilpotent element is central. This is an immediate consequence of Lemma 1. For any subsets A, B of a ring we denote by $A \circ B$ the two-sided ideal generated by all additive commutators xy - yx, $x \in A$, $y \in B$.

Lemma 1. Let R be a ring. Assume that $a \circ R \subseteq (a^2) \circ R$ for every $a \in R$, where (a^2) is the two-sided ideal generated by a^2 Then, every nilpotent element of R is central.⁸⁾

In fact, let $a^n=0$, n>1. We shall show that a is central by the induction for n. Since $(a^2)^{n-1}=0$, a^2 is central, and so $x^{n-1}=0$ for every $x \in (a^2)$. This shows that x is also central and $(a^2) \circ R=0$. Thus, $a \circ R=0$ completing the proof.

It is well known that if every nilpotent element of a ring is central then so is every idempotent.⁴⁾ Thus, we see that every idempotent in a ξ -ring is central.

Another useful result for ξ -rings is the following

Lemma 2. Let R be a ξ -ring and r its nonzero right ideal. Then r contains a nonzero central element.

In fact, let $0 \neq a \in r$ and write f(a)=f. Then $a-a^2f$ is central, while if $a-a^2f=0$, then $a(a-afa)=(a-a^2f)a=0$, and so $(a-afa)^2=0$, hence a-afa is central. If a=afa, then $af=(af)^2$, so af is central. Since we are now supposing $0 \neq a=a^2f$, we have $af \neq 0$.

We remark here an evident fact that every homomorphic image of a ξ -ring is also a ξ -ring.

Lemma 3. In a ξ -ring without zero divisors, af(a) = f(a)a for

¹⁾ This term is due to Dr. M. P. Drazin. We wish to express our gratitude to him who gave us suggestions.

²⁾ A ring is called to be strongly regular if for every x there is g(x) such that $x=x^2g(x)$.

³⁾ Alex Rosenberg proved our Lemma 1 under the assumption that for any a, b there exists g(a, b) such that $b(a-a^2g(a, b))=(a-a^2g(a, b))b$. See Theorem 2 of Drazin [3].

⁴⁾ See Lemma 2 of Herstein [4] or Theorem 1 of Drazin [3].

every a.

In fact, we write f(a)=f. Since $a-a^2f$ is central, $a^3f=a^2-a$ $(a-a^2f)=a^2-(a-a^2f)a=a^2fa$, so $a^2(af-fa)=0$ which implies af=fa. Our main purpose is to prove the following

Theorem 1. Let R be a ξ -ring. Then the set N of all nilpotent elements of R forms a two-sided ideal contained in the center of R. The residue ring R-N is a subdirect sum of division rings and commutative rings.

Proof. By Lemma 1, N is an ideal contained in the center. Let $x \notin N$. Then there exists a maximum two-sided ideal P_x which contains N and does not contain any powers of x. Clearly P_x is a prime ideal. Moreover, by Lemma 2, $R-P_x$ has no zero divisors. First, assume that $R-P_x$ is subdirectly reducible and is a subdirect sum of $R-Q_a$ satisfying $Q_a \supset P_x$. We denote x modulo P_x by \overline{x} . Then the α -component \overline{x}_{α} of \overline{x} is nilpotent for every α . Since $R-Q_{\alpha}$ is also a ξ -ring, \overline{x}_a is central and moreover $\overline{x}_a u$ is also central for every $u \in R-Q_a$. Hence \overline{x} and $\overline{x}\overline{y}$ are central for every $\overline{y} \in R - P_x$. Let $\overline{z} \in R - P_x$. Then $\overline{x}\overline{y}\overline{z} = \overline{z}\overline{x}\overline{y} = \overline{x}\overline{z}\overline{y}$. Since $\overline{x} \neq 0$ and $R - P_x$ has no zero divisors, we see that $\bar{y}\bar{z} = \bar{z}\bar{y}$, whence $R - P_x$ is a commutative ring. Next, we assume that $R-P_x$ is subdirectly irreducible and denote its unique minimum two-sided ideal by a. Let $a \ni a \neq 0$. Since $aa \neq 0$, aa = a by Lemma 2. Similarly, we obtain a = a by Lemma 3. Thus, a is a division ring. It follows from this that $R-P_x$ is semisimple and hence is primitive by its subdirect irreducibility. From a well-known theorem for primitive rings we may conclude that $R-P_x$ is a division ring.⁵⁾ Since $\bigcap P_x = N$, this completes the proof.

Corollary. Let R be a ξ -ring. Then af(a)-f(a)a, $a-f(a)a^2$ and a-af(a)a are all central for every $a \in R$.

In fact, when R is a division ring, af(a)=f(a)a by Lemma 3. This holds trivially if R is commutative. Thus Corollary follows immediately from Theorem 1.

In the rest of the paper we shall treat ξ -rings under a rather strong assumption. A ring is called an I-ring if every nonnil onesided ideal contains a nonzero idempotent. An FI-ring is a ring of which every homomorphic image is an I-ring.⁶⁾

Theorem 2. An FI-ring R is a ξ -ring if and only if every nilpotent element of R is central. Then, R-N is strongly regular where N is the ideal consisting of all nilpotent elements.⁷

In fact, we assume that every nilpotent element of an FI-ring

⁵⁾ See Theorem 22 of Jacobson [6] and its proof.

⁶⁾ See Levitzki [7]. Of course, every π -regular ring is an FI-ring.

⁷⁾ This is a slight generalization of Theorem 6.1 of Drazin [2] and Theorem 5 of Drazin [3].

No. 2]

R is central. Then the FI-ring R-N has no nilpotent elements. Hence R-N is strongly regular⁸⁾ and *R* is a ξ -ring.

McLaughlin and Rosenberg proved among others that if all zero divisors of an I-ring R are central then (i) R is commutative or (ii) R is a division ring or (iii) R is a noncommutative ring satisfying the following conditions: The set of zero divisors coincides with the radical $N \neq 0$ and R-N is a (commutative) field.⁹⁾ They showed also examples of rings of type (iii)¹⁰⁾ Relating to their results we shall prove finally the following

Theorem 3. If an FI-ring R is a ξ -ring, then R is a subdirect sum of FI-rings in which every zero divisor is central.

Proof. Let R be a subdirectly irreducible FI \hat{z} -ring. We have only to show that any zero divisor of R is central.¹¹⁾ Denote the unique minimum two-sided ideal of R by a and its left annihilator ideal by $l(\mathfrak{a})$. If $l(\mathfrak{a}) \ni e = e^2 \neq 0$, then $eR \supseteq \mathfrak{a}$ since e is central. Thus, $\mathfrak{a} = e\mathfrak{a} = 0$ which is a contradiction. This implies that $l(\mathfrak{a})$ is nil and hence is contained in the center. If x is a left zero divisor, then $x \in l(\mathfrak{a})$ by Lemma 2, so that x is central. Therefore, every right zero divisor is a left zero divisor and is also central. This completes the proof.

References

- Garett Birkhoff: Subdirect unions in universal algebra, Bull. Amer. Math. Soc., 50 (1944).
- [2] M. P. Drazin: Algebraic and diagonable rings, Canadian J. Math., 8 (1956).
- [3] —: Rings with central idempotent or nilpotent elements (to appear).
- [4] I. N. Herstein: A generalization of a theorem of Jacobson, Amer. J. Math., 73 (1951).
- [5] —: The structure of a certain class of rings, Amer. J. Math., 75 (1953).
- [6] N. Jacobson: The radical and semisimplicity for arbitrary rings, Amer. J. Math., 61 (1945).
- [7] J. Levitzki: On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc., 74 (1953).
- [8] J. E. McLaughlin and Alex Rosenberg: Zero divisors and commutativity of rings, Proc. Amer. Math. Soc., 4 (1953).

⁸⁾ See Theorem 5.5 of Levitzki [7].

⁹⁾ See Theorem 3 of McLaughlin and Rosenberg [8].

¹⁰⁾ In such a ring the commutator ideal is nonzero and contained in the radical. Thus, this gives a counterexample for the so-called Herstein's conjecture that every ξ -ring is a subdirect sum of division rings and a commutative ring. See Drazin [2].

¹¹⁾ Every ring is a subdirect sum of subdirectly irreducible rings. See Birkhoff [1]

Postscript

After this paper was presented, we saw Alex Rosenberg: "On a paper of Drazin" (to appear), in which he proved our Theorem 3 under the π -regularity assumption. We were informed from his letter that he had made the same remark as ours given in the footnote (10), in his review (to appear) of Drazin [2]. Drazin showed that our Lemma 3 is quite unnecessary to prove Theorem 1 since any ring $R \neq 0$ satisfying xR = R for any $x \neq 0$ must be a division ring.