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1. It is well known that, if f(t) belongs to the Lip a class,
0<a<l, then
( 1 ) s(t, f)--f(t)-0 (log n/n), uniformly,
where s(t, f) is the nth partial sum of the Fourier series of f(t).

The factor log n on the right of (1) can not be replaced by the
smaller. Then arises the problem when the factor log n may be
omitted. As its answer it is known the following theorems.

Theorem 1.1) Let 0<a<l, p>l, 0</<1 and a--N--1/p. If
f(t) belongs to the Lip (, p) class which is a subclass of Lip a, then
2 ) s,(t, f)--f(t)--O(1/n), uniformly.

Theorem 2.) If f(t) belongs to the Lip a class, 0<a<l and it
is of monotonic type, then (2) holds.

A function f(t) is said to be of monotonic type, if there is a
constant C such that f(t)+Ct is monotonic in the infinite interval

We shall here treat the following problem: If f(t)belongs to
the Lip a class or some other classes, then under what local condition

s(x, f)-f(x)-O(1/n)
holds at a point x? Similar problem arises concerning Cesro means.
The latter was recently treated by T. M. Flett

The theorems which we prove are as follows.
Theorem . Let 0<a< 1, p 1. Suppose that f(t) belongs to the

Lip a class, or Lip (a, p) class, or that f(t) is of (1/a)-bounded varia-
tion. If the function

O(u)=u(u)-u {f(x+u)+f(x--u)--2f(x)}
is of bounded variation in the right neighbourhood of u--O and

( 3 ) ]dO(u) l-O(t+),

then
(4) s,(x, f)--f(x)--O(1/n).

This contains Theorem 2 as a particular case. We can get also
a corollary of Theorem 3 which contains Theorem 2 [see 3].

In the case a-1 in Theorem 3, it needs an additional condition
that the integral

1) cf. [1] and [2]. Lip(, p) is a subclass of Lip(-l/p).
2) Cf. [83.
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exists [see 2.
Further we have
Theorem 4. Let 0<1. If

f{f(t+)--f(t--)}d--O(h//log l/h) a h-O

uniformly in t, and if, for a fixed x,

fl{f(x+u)--f(x)}du-O(hl/) as h-->O,

then
Sn(X, f)-- f(x)--O(1/n).

This theorem may be proved by a slight modification of the

then
a(x)--f(x)--O(n-).

We can generalize this as follows.
Theorem 8. In Theorem 7, we can replace (6) by (3).
2. Proof of Theorem :. We follow, the proof of Young’s

test for convergence of Fourier series. We set q(u)-q(u) and

proof of a theorem due to one of us [5, Theorem 7. Hence the proof
is omitted.

On the other hand, T. M. Flett [4 proved the following theorem:
Theorem !i. Let 0 < a< 1, 0 < r. If f(t) is of bounded varia-

tion in the interval (--, ) and

ftl dpx(U)

_
At

when 0 t , then
( 5 ) a(x, f)--f(x)--O(1/n),
where a(x, f) denotes the nth Cesro mean of order of the Fourier
series of f(t).

We can generalize this in the following form.
Theorem 6. Let 0 <a< 1. If O(u)--Uqx(U) is of bounded varia-

tion in the interval (0, ) and

3 ) v(t)-- dO(u)[-O(t/) (0 t ),

then (5) holds at x.
T. M. Flett has further proved that
Theorem 7. Let O<a<l, 0<1, O<r and ka-fl. If

x is a point such that
pn(x)--O(1/n)

where p(t) is the nth term of the Fourier series of f(t), and

( 6 ) ldox(u) l-O(t) (0 t ),
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v(t)-----f] dO(u) I.
We write

s(, f f()--1 p(u) sin (n+ l/2)U- du
r 2 sin u/2

+ + )_ 1 (I,+Io+I),
l/

where is aken such tha 0() is of bounded variation in he interval
(0, v). Since 9(,)-0(=), we have

/

(+1/) e() &-o(1/O,

as . If f(t) belongs to Li or Li(, p)or is of (1/)-bounded
variation, then I-0(1/0 for a fixed .

In order to estimate I, we set
(t)-(t)/t--O(t)/t, for t (1/, ),

=0, otherwise.
Sinee O(t) is of bounded variation in the interval (0, ), (t) is also
there, and then IV/ where V is the total variation of (t).
Now let

1/=to<t<t< <t-,
then

and hence, by

t_ +
t-i

1/n 1In 1/n

_<_Anl-.
Thus we have IlA/n%

Collecting above estimations we get (4).
From the proof of Theorem 3, we get the following
Theorem 9. If f(x) belongs to the Lip I class and O(u)--uq,(u)

i of bounded variation in the right neighbourhood of u-0 and

f*idO(u) f, io.(u) au< ,
then

sn(x, f)-f(x)-O(1/n).
3. If f(t) is of monotonic type, then

f(t+h)--f(t)+Ch
increases or decreases for each t as h increases. Generalizing this
idea, we say that f(t) is of (a)-monotonic type (0<a<l) if there is
a constant C such that
( 7 ) f(t+h)--f(t)+Ch
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is monotonic for each t, where C is independent of t.
Functions of monotonic type can not have cusp, but functions of

()-monotonic type may have cusps infinitely many. For example,

f(x)-- , cos nx/n
n=l

belongs to the Lip a class, but not of monotonic type, since f(x),-x
(x 4 0). Let

F(x)-- f(2x)/2,
then F(x) is also a function of the Lip a class and of (a)-monotonic
type, and further it has infinitely many cusps.

As a corollary of Theorem 3 we get
Theorem 10. If f(x) belongs to the Lip class and is of

monotonic type, 0 4 41, then (2) holds.
For, we can suppose that (5) is monotone increasing. Hence

dO(u) d {u(f(x +u) f(x))}

+ d{u(f(x--u)--f(x))}l I+I,

and

I d {u(f(xA-u)-- f(x)A-Cu)} A-I CI du/

--t {f(x+t)-- f(x)+Ct} +l C[ t/ At+,
where A is independent of . Thus we get (2).

4. Proof of Theorem 5. We write

an(X, f)--f(x)-- 1___ qx(u)K:(u)du

where K:(u) is the nth Fejr kernel of order a. It is known
that Kn(U) An
and

K(u)-- l sin {(n_+_l/2_a/2)u--Tra/2} 1

A (2 sin u/2) n A-1 (2 sin u/2)
8(I--)A n (2 sin u/2)’ (10] 1).

Setting N=n+ 1/2+ a/2,

a(x, f) f(x) --l/n (u)g:(u)du

f sin(2/)(N--/2) ’ p(u) d+A (u)---:-:si-:-2:;- du.+
A /n n+ (2 sin u/2)

Se(--) ( (u)du+
/n

We shall prove that all I’s are of order O(1/n).
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Since dO(u)--tp(t)--O(t/), we get p(t)-O(t) and then

In order to ostimate I we write

I. + I.+,
1In 1/n 6

where

an I is a linear combination o the nth Fourier coecients of the
unetion

e(t)-(t)/( sin t/)+ in (/n, ),
=0 otherwise.

(t) is o bounded variation and its total variation is

1/n 1In
3

Hence, by a well-known theorem,

f*_ .(u) sin (Nu--/2)du < V/n < A
/

(2-Si 2)i+*

and then ]I,[A/n, from which it follows [IelA/n.
Now

f I(u)l du.4 (=_du < A
n u a -/ /n

Collecting above estimations we get the required relation (5).
8. Proof of Theorem 8. From the proof of Theorem 7, it is

sufficient to prove that I-O(1/n). We get easily -O(1/nO. In
order to prove I==O(1/nO, it is suffieient to use a lemma due to
T. M. Flett [4"

Lemma. Let 1 <kl, let
$(t) 1/(2 sin t/2)+’ (8t),

=,t (0t<),
where 8=1/(2 sin a/2)*+ and

()-o(1/#)
where 0 < 1. Then

=(u)$(u) nu du=O(1/#).sin
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