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1. It is well known that, if f(¢) belongs to the Lipa class,
0<a<1, then

(1) s,(t, /)—f()=0 (log n/n%), uniformly,
where s,(¢, f) is the nth partial sum of the Fourier series of f(¢).

The factor logn on the right of (1) can not be replaced by the
smaller. Then arises the problem when the factor logn may be
omitted. As its answer it is known the following theorems.

Theorem 1. Let 0<a<l, p>1, 0<B<1 and a=L—1/p. If
S (&) belongs to the Lip (B, p) class which is a subclass of Lip a, then
(2) s,(t, £)—f()=0(1/n%), uniformly.

Theorem 2.2 If f(t) belongs to the Lip a class, 0<a<l and it
18 of monotonic type, then (2) holds.

A function f(¢) is said to be of monotonic type, if there is a
constant C such that f(¢)4+Ct is monotonic in the infinite interval
(—c0, o).

We shall here treat the following problem: If f(t) belongs to
the Lip a class or some other classes, then under what local condition
8u(x, [)—F(®)=0(1/n")
holds at a point #? Similar problem arises concerning Cesaro means.

The latter was recently treated by T. M. Flett [4].

The theorems which we prove are as follows.

Theorem 3. Let 0<a<l, p>1. Suppose that f(t) belongs to the
Lip « class, or Lip (a, p) class, or that f(t) is of (1/a)-bounded varia-
tion. If the function

6(u)=up,(w)=u{f(z+u)+f(x—w)—2f(2)}
is of bounded variation in the right neighbourhood of w=0 and

(3) [ 16wy | =0+,
then '
( 4 ) Sn(x’ f)—f(x):O(l/n“).

This contains Theorem 2 as a particular case. We can get also
a corollary of Theorem 3 which contains Theorem 2 [see § 3].

In the case a=1 in Theorem 3, it needs an additional condition
that the integral

1) Cf. [1] and [2]. Lip(a, p) is a subclass of Lip (@—1/p).
2) Cf. [3].
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exists [see §2].
Further we have
Theorem 4. Let 0<a<l. If

f M F - u)— FE—w)) du=0(h*/log 1/k) as h—0

uniformly in t, and if, for a fixed z,
[* @t —sEidu=00  as b,
0

then
8u(#, ) — f(®)=0(1/n%).

This theorem may be proved by a slight modification of the
proof of a theorem due to one of us [5, Theorem 7]. Hence the proof
is omitted.

On the other hand, T. M. Flett [4] proved the following theorem:

Theorem 5. Let 0<a<l, 0<8<m. If f(t) is of bounded varia-
tion in the interval (—8§,8) and

[ 4.y <
when 0 <t=<8, then '

(5) au(@, f)— F(%)=0(1/n%),
where oi(x, [) denotes the nth Cesiro mean of order a of the Fourier
series of f(t).

We can generalize this in the following form.

Theorem 6. Let 0<a<l. If O(u)=up,(u) is of bounded varia-
tion tn the interval (0,8) and

(3) W= [ ldow =0 0=t=),

then (5) holds at .
T. M. Flett has further proved that
Theorem 7. Let 0<a<l, 0=<8<1, 0<8<7m and k=a—R. If
x 18 a point such that
pal@)=0(1/)
where p,(t) s the nth term of the Fourier series of f(t), and

t
(6) JALZOIEG (0=t=9),
then '
(@) — (@) =0(n"").
We can generalize this as follows.
Theorem 8. In Theorem 7, we can replace (6) by (3).

2. Proof of Theorem 3. We follow, the proof of Young’s
test for convergence of Fourier series. We set ¢, (u)=¢(u) and
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o= [ | 40w .

We write

s.(0, )= f (@)= = [ putwy sin(n+1/2)u g,

® 2 sin u/2

L )

1/n
where 7 is taken such that 6(n) is of bounded variation in the interval
(0, 7). Since ¢(t)=0(t*), we have

L= m4172) [ o) | du=0(1/n),

ag n—> . If f(t) belongs to Lip @ or Lip (a, p) or is of (1/a)-bounded
variation, then I,=0(1/n%) for a fixed 7.
In order to estimate I,, we set
HO)=p)t=0¢)/f, for te(l/n, )
=0, otherwise.
Since 6(t) is of bounded variation in the interval (0, 7), £(¢) is also
there, and then |I,|<V/n where V is the total variation of &(t).
Now let
Un=t,<t;<t,<..-<t,=n,

then

oty _ 6.y

t: iy

and hence, by (3)

=" " do(w) | o (7 ]0(w)] () _ o(l/n)
v= ("l = /f ) v2 f 1900 g 2D U 1 4

1_1

16¢)—6C:-)|
8 e,

2
ti1

=16@)|

1/n
' < An'-°.
Thus we have |I,| < A/n®.
Collecting above estimations we get (4).
From the proof of Theorem 3, we get the following
Theorem 9. If f(x) belongs to the Lip 1 class and O(u)=up (u)
t$ of bounded variation in the right neighbourhood of u=0 and

[laswi=oe,  [12-laues,

then
5.(®, £)— F(@)=0(1/n).
3. If f(¢) is of monotonic type, then

JS@E+h)—f(@t)+Ch
increases or decreases for each ¢ as % increases. Generalizing this
idea, we say that f(t) is of (a)-monotonic type (0<a<1) if there is
a constant C such that
(7) FE+h)— f(t)+Che
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is monotonic for each ¢, where C is independent of ¢.
Functions of monotonic type can not have cusp, but functions of
(a)-monotonic type may have cusps infinitely many. For example,

flx)= i cos nx/nt+®
n=1
belongs to the Lip a class, but not of monotonic type, since f(x)~uz*
(x 0). Let
F(x)= Z_‘l, f(2rx)/2",
then F'(x) is also a function of the Lip a class and of («a)-monotonic
type, and further it has infinitely many cusps.
As a corollary of Theorem 3 we get
Theorem 10. If f(x) belongs to the Lip « class and is of (a)-

monotonic type, 0<a<1l, then (2) holds.
For, we can suppose that (5) is monotone increasing. Hence

[1ds)) = [(1duF@+u—f@)]

+ [M1auF@—w— F@pl=L+1,
and '
1= [ a(uf@+uy—f@+cu} +Ic| [ dut

0 0
=t{f(x+t)— f(x)+Ct*} +|C|t'+* < At'+?,
where A is independent of «. Thus we get (2).
4. Proof of Theorem 6. We write

oi(w, )= F@=7 [ e @K

where KZ(u) is the nth Fejér kernel of order a. It is known

that | KX(u) | < An
and
Keuy=_L sin{l(n+12+a/2u—ma/2} | o« 1
" A (2 sin u/2)!** n+1 (2 sin u/2)?
+i _8a(l—a) (6]=<1).

n? (2sinu/2)®’
Setting N=n+1/2+a/2,

o N=r@=7 [ K

L OB € [,

T A Vn (2 sin u/2)!* n+1y  (2sinwu/2)
80a(l—a) (" @ (WA _ 1 7 7.
+ n? l/fn 2 sin u/2)? bt bt L

We shall prove that all I’s are of order O(1/n®).
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Since f "d6(u)=tp(t) =0, we get o(t)=0(t*) and then
0

L:o(n f Wu“du):O(n‘“).

0
In order to estimate I, we write

L=["=[" +f =T+ 1,

1/n 1/n
L < A A0 du
I l f 1+a na

and I, is a linear combmatlon of the nth Fourier coefficients of the
function

where

) =p.()/(2sint/2)**! in (7/n,?),

=0 otherwise.
&(t) is of bounded variation and its total variation is
do(u) 16@) | 4, — ¥&) _ v(1/n) <
V= 1’/,: ui+e +2f ud+e 83+§[ (1/"’&)““ ,+An = An.

Hence, by a Well-known theorem,

P o
l f (2 sin u/2)!+* sin (Nu a/2)dul =Vin<A

and then |121|§A/n , from which it follows |I,|<A/n".

o A ("] ( w)| A A
L|<? P\U)] gy <~
IL]< f /f =
Collecting above estimations we get the required relation (5).

5. Proof of Theorem 8. From the proof of Theorem 7, it is
sufficient to prove that I,=0(1/n*). We get easily I,,=0(1/n%). In
order to prove IL,=O0O(1/n%), it is sufficient to use a lemma due to
T. M. Flett [4]:

Lemma. Let —1<k=<1, let
&(t)=1/(2 sin t/2)'** e=t=m),
where ud=1/(2 sin 8/2)'** and

pu(2)=0(1/n")
where 0<8<1. Then

f " o (w)Ew) sin nu du=0(1/n?).
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