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1. Let X and Y be topological spaces and let f be a mapping
of X onto Y. f is said to be open (closed) if the image of every
open (closed) subset of X is open (closed) in Y. It is easy to see
that if f is an open continuous mapping, then the local compactness
is invariant under f. As a generalization of the notion of the local
compactness, L. Zippin 4 has introduced the notion of the semi-
compactness.

In the present note, we shall consider conditions under which the
semicompactness is invariant under an open continuous mapping. The
conditions we obtain are sufficient; however, we show by an example
that if we drop one of the conditions the semicompactness is not al-
ways invariant.

2. We begin with giving the definition of the semicompactness
introduced by L. Zippin. A topological space X is called semicompact
at a point x if every neighborhood U of x contains an open neighbor-
hood V of x such that the boundary V is compact.) X is called
semicompact if X has this property at every point.

Theorem 1. Let f be an open continuous mapping of a topo-
logical space X onto a topological space Y. If f is closed, then the
semicompactness is invariant under the mapping f.

Proof. Let y be any point of Y and let U(y) be any open neigh-
borhood of y. Then f- {U(y)} is an open set containing the inverse
image f-(y) since f is continuous. Let x be any point of f-(y),
then there exists an open neighborhood O(x) such that O(x)f-{ U(y)}
and O(x) is compact since X is semicompact. Since f is an open and
closed continuous mapping and O(x) is an open set, f{O(x)} is an open
neighborhood of y such that f {O(x)} U(y) and 3f {O(x)} f {30(x)}
(see G. T. Whyburn 2J, p. 147). Since f is closed and continuous,
f{30(x)} is a closed compact set in Y. Hence 3f{O(x)} is compact.
Therefore Y is a semicompact space. Thus Theorem 1 is proved.

Theorem 2. Let f be an open continuous mapping of a Haus-
dorff space X onto a weakly separable ) Hausdorff space Y such that
the inverse image f-(y) is connected for every point y of Y. If the

1) Ac-c-ording to L. Zippin, we allow that V may be vacuous. A semicompact
space is also said to be locally peripherally compact (cf. [lJ).

2) A topological space satisfying the first axiom of countability will be called
weakly separable.
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boundary f-(y) is compact for every point of Y, then the semi-
compactness is invariant under the mapping f.)

Proof. If we can prove that f is closed, Theorem 2 follows
immediately from Theorem 1. So that we prove that f is closed
in the following. Let y be any point of Y and let U be any open
subset of X containing f-l(y) and let U0 the union of all f-l(y,)such
that f-(y’)U. We shall prove that U0 is an open set. Since X
is semicompact, there exists an open neighborhood V(x) of x for every
point x of 3f-(y)such that V(x)U and 3V(x) is compact. By
the assumption that f-(y) is compact, we can find a finite number
of such V(x) which covers f-(y), say {V(xt)} (i--1, 2,..., m). Let

W--[J V(xi)Intf-(y), then W is an open neighborhood of f-(y)
il

and is contained in U. It is easily verified that 25W [_J 3V(x)
i=1

f-’(y). Hence W is compact. Suppose that f- {O(y)} W. for
every open neighborhood O(y) of y. Since Y is a weakly separable
space, there exists a basis {O.(y)} (n-1, 2,...) for open neighborhoods
of y such that O(y)O+,(y). Therefore there exists a positive
integer no such that O,(y) f(W) for all n no. Hence f-1 [On(y)}
W=+ and f-I{O(y)}CWd where CW denotes the complement
of W. Then we can find a sequence {Yn} of points such that Yn e On(y)
and f-’(yn)W+ and f-’(yn)CW+ (nno). Then we have
f-l(y) W for n no.

In fact, suppose on the contrary that f-’(y,) W-+, then we

have f-(yn)- {f-’(Yn)CW} {f-’(yn) W}. Since f-’(yn)W+
and f-’(y,) is connected by hypothesis, we get f-(yn)CW-. Hence
f-(Yn)W. Therefore f-(y)W, but this contradicts the
assumption that f-(y)3W-+. Thus we get f-(yn)W+.
Since W is compact, there exists a subsequence {y} (i--1, 2,...)
of {y] such that x ef-(y)W and {x,} converges to a point x
of 3 W. Then [y} converges to the point f(x). Since Y is a Haus-
dorf space, we get y-f(x) and hence x ef-’y). Therefore x is an
interior point of W. This contradicts that x belongs to W. There-
fore we can find an open neighborhood O(y) such that f- {O(y)} W.
The above argument can be applied to any point y such that f-(y)
U. So that the set U0 is an open set. Therefore, by G. T. Why-
burn’s theorem [3, f is a closed mapping. Thus the theorem is
proved.

Remark. A.H. Stone [1] has proved that if a closed continuous
mapping f of a topological space X onto a topological space Y satisfies
the condition that f-(y) is compact and f-(y) is connected for every

3) cf. Theorem 2 in [1].
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point y of Y, then the semicompactness is invariant under the mapping
f. For the proof of Theorem 2, we can use Stone’s result in stead of
Theorem 1. From the proof of Theorem 2, we get also the following
theorem.

Theorem :. Let f be an open continuous mapping of a semi-
compact Hausdorff space X onto a weakly separable Hausdorff space
Y. If the inverse image f-(y) is connected and the boundary f-(y)
is compact for every point y of Y, then the mapping f is closed.

3. In this section, we shall give two examples which show that
we can not drop one of the restrictions imposed in Theorems 1 and 3.

Example 1. Let X be the set of points in the Euclidean plane
such that [(x, x) 0 x, 0 x. We define the basis for open neigh-
borhoods of each point (x, x:) of X as follows. (i) The basis for
open .neighborhoods of the point (Xl, x) such that
4=0, is the family of the sets of points (x,
+(x--x’)<e and the circle (x--x)+(x;--x:)=e is disjoint with the

arc AB of the circle x+x-- 1, where A=(0, 1) and B--(1, 0). (ii)
Let a, a.,.., be the sequence of points on the arc AB such that

a-->B and a./B_ a.B for n--l, 2,-.. Let ,/.,. be the sequence

of open arcs such that .fl--AB--aB--{A}, fl--aB--a.B--{a},

--asB--{a.},... The basis for open neighborhoods of each point

(x, x:) on the arc AB is the family of the open arcs contained in AB
to which (x,x) belongs. (iii) The basis for open neighborhoods of

the point (0, 0)is the family of the sets I-(x, x.)]x+x<
n<x+xJ [/ J n where n is any positive integer greater than
1. Then it is easy to see that X is a semicompact topological space.
’Let Y be the set [y 0 y< lJ [y 1 < y<2
{a0*, }. We define the basis for open neighborhoods of each point of
Yas follows. (1) For the point y such that 0<y<l or l<y<2,
all open intervals with center y contained in

(2) Fr the pint Y-O’ all sets IYlO-Y<---i[y2-l-<
[2?lJn, where n is any positive integer greater than 1. (3) For

each point *, the set {fl*}. (4) For each point a* (n=l, 2,...), the
set {a*,/*, fl*+}. (5) For the point , all sets [a*, * ]j :> n where
n--l, 2,.... (6) For the point a’, the set {a0*,l*}. Then we can
easily verify that Y is a topological space and is not semicompact.

Now we shall define a mapping f of X onto Y. Let p be the
point (x, x.). If x+x--y< 1 or x+x y> 1, then f(p) y or f(p)

*. And let2 1 If p e/R or p a, then f(p)--fl* or f(p)
Y
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f(A)=ao* and let f(B)=. Then it is easy to see that f is an open
continuous mapping, but is not closed. Therefore by this example,
we can see that in Theorem 1, if we drop the condition that f is
closed, the semicompactness is not always invariant under f.

Example 2. Let X be the set of points (x, x.) in the Euclidean
plane such that 0xl, 0<x<l. Then the subspace X of the
Euclidean plane is a semicompact (locally compact) Hausdorff space.
Let Y be the closed interval [0, 1 in the real number space. Then
Y is a weakly separable Hausdorff space. Let f be a mapping of X
onto Y such that f(p)--x for every point p=(, x) of X. Then it
is obvious that f is an open continuous mapping such that f-’(y) is
connected but 3f-l(y) is not compact. Furthermore it is easy to
verify that f is not closed. Therefore we can see that in Theorem
3, if we drop the condition that f-(y) is compact for every point
y of Y, the mapping f is not always closed.
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