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66. On Weakly Compact Regular Spaces. II

By Shouro KASAHARA
Kobe University

(Comm. by K. KU,NUGI, M.J.A., May 15, 1957)

In their paper [4, S. Mardeid and P. Papid have given interesting
characterizations of pseudo-compact spaces,’ and their results lead us
to study weakly compact spaces 2 introduced by them. The main
object of this paper is to give some characterization of weakly com-
pact regular spaces. By a theorem of S. Mardeid and P. Papid, the
results stated below give characterizations of pseudo-compact spaces
whenever the spaces considered are completely regular.

A topological space ) E is said to be weakly compact if to every
pairwise disjoint infinite family of open sets O of E there corresponds
a point x eE such that each neighbourhood V of x meets infinitely
many O. A family of subsets of a topological space E is said to be
locally finite if each point of E possesses a neighbourhood which meets
at most a finite number of the members of the family.

It is known) that a completely regular space is pseudo-compact
if and only if every locally finite open covering of it has a finite
subcovering, or equivalently, every star finite open covering of it has
a finite subcovering. This proposition is justified by the following

THEOREM 1. The following propert’ies of a regular space E are
equivalent:

( 1 ) E is weakly compact.
(2) Every infinite open covering of E has a proper subfamily

whose union is dense in E.
(3) Every locally finite family {O,} of open sets of E has a

finite subfamily whose union contains every 0.
(4) Every locally finite open covering of E has a finite sub-

covering.
(5) Every locally finite open covering of E has a finite sub-

family whose union is dense in E.
(6) Every star finite open covering of E has a finite subcover-

ing.

i)- A---miAey regular space is said to be pseudo-compact if every continuous
function on the space is bounded.

2) "Espaces faiblement compacts ". See S. Mardegi5 and P. Papi5 [4].
3) Throughout this paper we assume that every topological space satisfies the

axiom T1.
4) See for example K. Is6ki and S. Kasahara
5) A covering {Oak of a space is termed star nite if each member of {Oak meets

only a finite number of Oa’s.
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(7) Every star finite open covering of E has a finite subfamily
whose union is dense in E.

Obviously, the given family or coverings in Theorem 1 may be
replaced by countable many.

Proof. It is clear that the implications (3) -> (4), (4) - (5), (5) - (7),
(5)-->(6) and (6)->(7) hold true. First we show that (1) implies (2).
Let {0} be an infinite open covering of E, and let us suppose that,
for any index fl, the union [_J0 is not dense in E. Then for each

index , the complement U of [_J 0 is a non-empty open set, and as

can easily be seen, the family {U} is pairwise disjoint. But each
point x e E is contained in some 0, and 0 does not meet U unless
q-. Therefore the space E is not weakly compact. In order to
prove the implication (2)->(3), let us consider a locally finite family
{0} of open sets of E such that, for any finite set J of indices,
[_J0 [J0. Let x be a point in J0. Since {0] is locally finite,

the point x belongs to only a finite number of 0’s, say 0, 0, ,
We can find then by the regularity of E an open neighbourho0d V
of x whose closure is contained in 0. Let x: be a point in [_J 0 not

m(1)

belonging to [J 0. It is not hard to see that we can obtain by

induction a sequence of points x and a sequence of open neighbour-
hoods V of x (n--l, 2,...) such that if we denote by 0, 0,..., 0()
all of the members of [0] containing x, then V is contained in

n-l n-1

0( [_J V) and [_J [_J 0 Xn, where c is the complement operator.
= i= j=

Now, if the space E is covered by the sets V (n-1,2,...), then
Vn] is an infinite open covering of E which has no proper subfamily

whose union is dense in E. On the other hand, if [J VE, then

because of the regularity of the space E, we can choose, for each

n--l, 2,..., two open sets U and N such that UN and NV.
Since V 0 and since {0} is locally finite, it can be shown without

difficulty that the set U is closed. It follows that the family {N}
n=l

forms with ([J U) an infinite open covering of E, but this covering

can not possess any proper subfamily whose union is dense in E,
proving the implication (2)->(3). It remains only to prove that (7)
implies (1). To prove this, suppose that E is not weakly compact;
then there exists a pairwise disjoint sequence {0} of open sets of E
which is locally finite. Since the space E is regular, we can find an
open set V whose closure is contained in 0, and moreover, for each
n-2,3,...,n open sets V, V,..., Vn- can be choosen as follows:
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VOand VV- for i- 1, 2,...,n- 1. We set U O ([J(O))
--2

and U- V,:-( [_J (V3- V)) for m-2, 3,... Since the set
n=m+l

(J V is closed, the sets {U} (m--2,3,...) and the complement of
i=l

[J V: form an open covering of E which is star finite in view of the
i=l

construction. But any finite union of the members of this covering
can not be dense in E. This completes the proof of the theorem.

In connection with Theorem 1, we note that a normal space in
which every point finite open covering has a finite subfamily whose
union is dense in the space is nothing but countably compact.

In the remainder of the present paper, we concern with finitely
additive monotone set operators. Some of the characterizations of
weakly compact spaces obtained by K. Iski lJ will follow from a

theorem of S. Mardei6 and P. Papi6 [4, Thorme 2 or Thorme 3
and the theorems stated below.

It is well known that a countably compact space is characterized
in terms of its countable open coverings or decreasing sequences of
closed sets etc. On the other hand, S. Mardei6 and P. Papi6 have
given two characterizations of weakly compact regular spaces 4, 2.
Their characterizations are described also in terms of countable open
coverings and decreasing sequences of closed sets, and the proofs of
them have been done directly from the definition. But indeed, one
of their characterizations is an easy consequence of the other, and
the procedure of the proof of this fact is similar with the case of
countably compact spaces. Moreover, the proof of one of the asser-
tions which the present author has been stated in 3_ may be performed
analogously. We will discuss here these facts in more general forms,
as it seems that this is not without interest.

Let E be a set, and (R) a family of subsets of E closed under
the formation of finite unions and finite intersections: ABe(R) and
ABe(R) whenever Ae(R) and Be(R). We denote by (R)c the family
consisting of the complements of A e (R). will denote the empty set.
An operator a which assigns to each member A of (R) a subset A of
E (i.e., an operator defined on (R)) is called additive if (AB)AB
for any A, B (R), and monotone if A B implies A" B whenever
A, Be(R). An obvious computation shows that an additive operator
defined on the class of all subsets of E is monotone. With these
notations, we obtain the following

THEOREM 2. If a is an additive monotone operator defined on (R),
then the following properties are equivalent:

(1) Every countable covering {A} of E which consists of the
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members of has a finite subfamily AI, Ai.,. ., Ai, such that [J ATj--E.
j=l

(2) Every decreasing sequence {B} of the members of c such
that B: has a non-empty intersection.

(3) Every sequence {B} of the members of such that the
sequence {B} has the finite intersection property has a non-empty
intersection.

Proof. Since the operator a is monotone, it is clear that (3)
implies (2), and the implication (1)-->(3) can be. readily shown by way
of complementation. To prove the implication (2)--> (1), let us consider
a countable covering {A}, Ae(R), of E. For any positive integer n,

the set C=A belongs to (R), and we have (C:)-C-( AJ
i=I i=I

__( J A). It follows therefore that if, for any n, the sets A, A,

.., Ag do not cover E, then the set (C) is not empty, and so we

have [C or equivalently [JAE, which is a contradiction.
n=l

Hence [_J AT-E for some n.
i=l

THEOREM 3. If is a monotone operator defined on , then the
following properties are equivalent:

(1) From every sequence {Be} of the members of c such that

[J E, we can extract a finite number of B’s whose union is E.
i=l

(2) For every decreasing sequence {A} of non-empty members

of , we have AT. .
i"-i

(3) For every sequence {At}, Ae, with the finite intersection

property, we have A. .
Proof. It will suffice to show that (2) implies (1). Let {B} be

a sequence of the members of such that [JB-E. For any

positive integer n, the set C-[JB is a member of (R), and consequently
i=l

{C} (n=l, 2,...) is a decreasing sequence of the members of (R).

Therefore, if C 4= E for any n, we have [’] C, . But this con-

tradicts the assumption that the sets B cover E, since C-( B/)

B2) U B:
i=l i=l

Similarly, we have the following theorems.
THEOREM 4. If a is an additive operator defined on (R), then the

following properties are equivalent:

( 1 ) Every covering {A} of E which consists of the members of
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has a finite subfamily A, A,..., A, such that [J Ag--E.
i--1

(2) Every family {B} of the members of (R) such that {B2}
has the finite intersection property has a non-empty intersection.

THEOREM 5. If is an operator defined on (R), then the follow-
ing properties are equivalent:

( 1 ) From every family {B} of the members of (R) such that
[JB=E, we can extract a finite number of B’s whose union is E.

(2) For every family {A} of the members of (R) with the finite
intersection property, we have A .

Let a be an additive operator defined on the class of all subsets
of E.. If the operator a satisfies the condition AA for any subset
A of E, and if we adopt as the class of all subsets A of E specified
by the relation A=A, then the properties mentioned in Theorems 2
and 3 are all equivalent. In particular, if E is a regular topological
space, by taking as a the closure operator on E and as (R) the class of
all open sets in E, every one of the properties mentioned in Theorems
2 and 3 becomes equivalent to the proposition that the space E is
weakly compact, by a theorem of S. Mardeid and P. Papid.
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