64. A Note on an Inequality of Levitzki

By Yuzo Utumi
Osaka Women's University
(Comm. by K. Shoda, m.J.A., May 15, 1957)

1. For any ring S we denote the nilpotency index of S modulo its radical by $j(S)$. In his paper [5], J. Levitzki proved the inequality (1)

$$
j\left(R_{1}+R_{2}\right) \leq j\left(R_{1}\right)+j\left(R_{2}\right)
$$

which holds for a pair of right ideals R_{1}, R_{2} in every I-ring A. The purpose of the present note is to show a new proof of (1). From our method the following generalization will be derived. For any module N we denote by $m(N)$ the least upper bound of all integers r such that N contains a submodule which is a direct sum of mutually isomorphic r submodules.

Theorem 1. Let M be an S-right module. Assume that for any nonzero x in M there exists a nonzero right ideal R_{x} which has zero intersection with the annihilator right ideal of x. Then, $m\left(N_{1}+N_{2}\right)$ $\leq m\left(N_{1}\right)+m\left(N_{2}\right)$ for any submodules N_{1}, N_{2} of M.

First, we note that the inequality (1) can very easily be proved in case the ring A is an FI-ring. In fact, we may assume that $j\left(R_{1}\right)$, $j\left(R_{2}\right)<\infty$ since if not the inequality is trivial. Let P be any primitive ideal of $R_{1}+R_{2}$ and V an irreducible module over $\left(R_{1}+R_{2}\right)-P$. Then ($R_{i}+P$) $-P$ modulo its radical is a dense ring of linear transformations of $\left(\left(R_{i}+P\right)-P\right) V\left[1\right.$, Theorem 2]. From this, since R_{i} is now also an FI-ring [4, Theorem 2.1], we see that $\left(R_{i}+P\right)-P$ modulo its radical is a total matrix ring, over a division ring, of degree at most $j\left(R_{i}\right)$ [3, Theorem 5.6]. Hence $\operatorname{dim} V \leq \operatorname{dim}\left(\left(R_{1}+P\right)-P\right) V+\operatorname{dim}\left(\left(R_{2}+\right.\right.$ $P)-P) V \leq j\left(R_{1}\right)+j\left(R_{2}\right)$, and so $j\left(R_{1}+R_{2}\right)=\max \operatorname{dim} V \leq j\left(R_{1}\right)+j\left(R_{2}\right)$.

In the rest of the paper we shall reduce the inequality (1) for an I-ring to that for an FI-ring. Our main tool is the extended centralizer defined by R. E. Johnson [2] and we need a certain number of lemmas relating to it.
2. Let M be an S-right module. We shall use the following notations: $M^{*}=$ the set of all submodules N of M having the property that $N \cap N^{\prime} \neq 0$ for all nonzero submodules N^{\prime} of $M ; \Omega(M)=$ the set of all semi-endomorphisms defined on a member of $M^{*} ; D(\alpha)=$ the definition domain of $\alpha \in \mathscr{I}(M)$; $\mathscr{C}(M)=$ the extended centralizer of S over M; $\bar{\alpha}=$ the element of $\mathscr{E}(M)$ which is the coset containing $\alpha \in \mathscr{R}(M)$. For any submodule N of M we denote by ΔN the set of all $\bar{\alpha} \in \mathbb{E}(M)$ corresponding to α such that $J_{\alpha} \subseteq D(\alpha)$ and $\alpha J_{\alpha} \subseteq N$ for some $J_{\alpha} \in M^{*}$. Let N^{c} be a maximal submodule of M disjoint to N. The homo-
morphism $\varepsilon_{N}: N+N^{c} \rightarrow M$, which is the identity on N and vanishes on N^{c}, belongs to $\mathscr{K}(M)$. Evidently, $\bar{\varepsilon}_{N}$ is an idempotent in $\mathbb{C}(M)$.

Lemma 1. Let N be a submodule of M. Then, $\Delta N=\bar{\varepsilon}_{N} \mathscr{E}(M)$ and $\mathfrak{E}(N) \simeq \Delta N \bar{\varepsilon}_{N}$.

The proof is straightforward, and hence will be omitted.
Lemma 2. $\quad j(\mathbb{C}(M)) \leq m(M)$.
Proof. $\mathfrak{E}(M)$ is a regular ring [2, Theorem 2], and so semisimple. Let $c \in \mathbb{E}(M)$ be a nilpotent element of index r. Then, for all $1 \leq i<r$ there exist $\gamma_{i} \in \mathscr{R}(M)$ such that $\bar{\gamma}_{i}=c$ and $\gamma_{i} D\left(\gamma_{i}\right) \subseteq D\left(\gamma_{i+1}\right)$. Clearly, $J=\bigcap D\left(\gamma_{i}\right) \in M^{*}$. Hence, for all $1 \leq i<r$ we may find $\delta_{i} \in \mathscr{R}(M)$ such that $\delta_{i} \leq \gamma_{i}$ and $\delta_{i} D\left(\delta_{i}\right) \subseteq D\left(\delta_{i+1}\right) \subseteq J$. We write $\beta_{i}=\delta_{i} \delta_{i-1} \cdots \delta_{1}$ and $\alpha_{j i}=\gamma_{j+r-i} \gamma_{j+r-i-1} \cdots \gamma_{j+1} \beta_{i}$ for $0 \leq j<i<r$. Then, $\bar{\alpha}_{j i}=c^{r}=0$. Let K be the intersection of the kernels of $\alpha_{j i}$ for $0 \leq j<i<r$. Evidently $K \in M^{*}$. Since $\bar{\beta}_{r-1}=c^{r-1} \neq 0$, the set I of all $x \in K$ satisfying $\beta_{r-1} x=0$ does not belong to M^{*}. Hence, $H \cap I=0$ for some nonzero submodule H of K. Now, the sum $H+\beta_{1} H+\cdots+\beta_{r-1} H$ is direct. In fact, if $\beta_{i} x_{i}=\beta_{i+1} x_{i+1}+\cdots+\beta_{r-1} x_{r-1}$, then $\beta_{r-1} x_{i}=\gamma_{r-1} \cdots \gamma_{i+1} \beta_{i} x_{i}=\sum_{i<j} \gamma_{r-1} \cdots$ $\gamma_{r+i-j+1} \alpha_{i j} x_{j}=0$, since $x_{j} \in H \subseteq K$. Hence $x_{i} \in I \cap H=0$. Finally we have to show that $H \simeq \beta_{i} H$. Let $\beta_{i} x=0$ for some $x \in H$. Then $\beta_{r-1} x=0$, so $x \in H \cap I=0$.

Theorem 2. Let N be a submodule of M. Then $m(N)=j(\Delta N)$.
Proof. Let N contain a submodule K which is a direct sum of n copies of a module L. Then, $\mathfrak{E}(K)$ is isomorphic to the total matrix ring of degree n over $\mathscr{C}(L)$ [6, (8.1)]. Hence $j(\mathscr{C}(K)) \geq n$, and so $j(\mathscr{C}(N)) \geq n$ by Lemma 1, which implies that $j(\mathscr{C}(N)) \geq m(N)$. Thus $j(\mathscr{E}(N))=m(N)$ by Lemma 2. $\quad j(\mathscr{E}(N))=j\left(\Delta N \bar{\varepsilon}_{N}\right)=j(\Delta N)$. Therefore $m(N)=j(\Delta N)$, completing the proof.

Lemma 3. Let M be an S-right module satisfying the assumption of Theorem 1. Then $\Delta\left(N_{1}+N_{2}\right)=\Delta N_{1}+\Delta N_{2}$ for any submodules N_{1}, N_{2} of M.

Proof. In case $N_{1} \cap N_{2}=0$, it is easy to see that $\Delta\left(N_{1}+N_{2}\right) \subseteq \Delta N_{1}$ $+\Delta N_{2}$. If not, let $a \in N_{1}, b \in N_{2}$ and $a+b \neq 0$. We denote by N_{3} a maximal submodule of N_{2} disjoint to $N_{1} \cap N_{2}$. Then the set T of all $y \in S$ such that by $\in\left(N_{1} \cap N_{2}\right)+N_{3}$ belongs to S^{*} by the argument similar to that of Johnson [2, the top of p. 892]. Hence $(a+b) T \neq 0$ from the assumption. $0 \neq(a+b) z=a z+b z \in N_{1}+\left(N_{1} \cap N_{2}\right)+N_{3}=N_{1}+N_{3}$. This shows that $\left(N_{1}+N_{2}\right)^{*} \ni N_{1}+N_{3}$. It follows easily that $\Delta\left(N_{1}+N_{2}\right)$ $=\Delta\left(N_{1}+N_{3}\right)$. Hence $\Delta\left(N_{1}+N_{2}\right) \subseteq \Delta N_{1}+\Delta N_{3}$. Since the Δ-operation is evidently monotonous, we have $\Delta N_{3} \subseteq \Delta N_{2}$ and $\Delta N_{1}+\Delta N_{2} \subseteq \Delta\left(N_{1}+N_{2}\right)$. Therefore $\Delta N_{1}+\Delta N_{2}=\Delta\left(N_{1}+N_{2}\right)$ which completes the proof.

Proof of Theorem 1. $\mathscr{C}(M)$ is regular, and hence is an FI-ring. Therefore, from the inequality (1) for an FI-ring which we have already proved we see that $j\left(\Delta N_{1}+\Delta N_{2}\right) \leq j\left(\Delta N_{1}\right)+j\left(\Delta N_{2}\right)$. Hence
$m\left(N_{1}+N_{2}\right)=j\left(\Delta\left(N_{1}+N_{2}\right)\right)=j\left(\Delta N_{1}+\Delta N_{2}\right) \leq j\left(\Delta N_{1}\right)+j\left(\Delta N_{2}\right)=m\left(N_{1}\right)+$ $m\left(N_{2}\right)$.
3. Lemma 4. Let S be a semisimple I-ring. Then $j(S)=m(S)$.

Proof. First we note that the singular ideal of any semisimple I-ring is zero [6, (4.10)]. In other words, the S-right module S satisfies the assumption of Theorem 1. Hence, $\mathfrak{C}(S)$ may be regarded as a quotient ring in the sense of [2] and we have $j(S)=j(\mathbb{E}(S))$ by virtue of [6, Theorem 5]. Now, $j(\mathscr{E}(S))=m(S)$ from Theorem 2. Therefore $j(S)=m(S)$, completing the proof.

Theorem 3. Let R be a right ideal of a semisimple I-ring S. Then $j(R)=m(R)$.

Proof. It is clear that the radical $N(R)$ of R is the left annihilator of R in R. From this it follows easily that $m(R) \leq m(R-N(R))$. Since $R-N(R)$ is also a semisimple I-ring [4], we have $j(R)=j(R-N(R))$ $=m(R-N(R))$ by Lemma 4. It is immediate from [3, Theorem 2.1] that $j(R) \leq m(R)$. Therefore $j(R)=m(R)$, completing the proof.

In view of this theorem, the inequality (1) for any I-ring A follows readily from Theorem 1.

References

[1] N. Jacobson: On the theory of primitive rings, Ann. Math., 48 (1947).
[2] R. E. Johnson: The extended centralizer of a ring over a module, Proc. Amer. Math. Soc., 2 (1951).
[3] J. Levitzki: On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc., 74 (1953).
[4] -: On P-soluble rings, Trans. Amer. Math. Soc., 77 (1954).
[5] -: The matricial rank and its application in the theory of I-rings, Revista da Faculdade de Ciências de Lisboa, 3 (1955).
[6] Y. Utumi: On quotient rings, Osaka Math. J., 8 (1956).

