64. A Note on an Inequality of Levitzki

By Yuzo Utumi

Osaka Women's University (Comm. by K. SHODA, M.J.A., May 15, 1957)

1. For any ring S we denote the nilpotency index of S modulo its radical by j(S). In his paper [5], J. Levitzki proved the inequality (1) $j(R_1+R_2) \leq j(R_1)+j(R_2)$

which holds for a pair of right ideals R_1, R_2 in every I-ring A. The purpose of the present note is to show a new proof of (1). From our method the following generalization will be derived. For any module N we denote by m(N) the least upper bound of all integers r such that N contains a submodule which is a direct sum of mutually isomorphic r submodules.

Theorem 1. Let M be an S-right module. Assume that for any nonzero x in M there exists a nonzero right ideal R_x which has zero intersection with the annihilator right ideal of x. Then, $m(N_1+N_2) \leq m(N_1)+m(N_2)$ for any submodules N_1 , N_2 of M.

First, we note that the inequality (1) can very easily be proved in case the ring A is an FI-ring. In fact, we may assume that $j(R_1)$, $j(R_2) < \infty$ since if not the inequality is trivial. Let P be any primitive ideal of R_1+R_2 and V an irreducible module over $(R_1+R_2)-P$. Then $(R_i+P)-P$ modulo its radical is a dense ring of linear transformations of $((R_i+P)-P)V$ [1, Theorem 2]. From this, since R_i is now also an FI-ring [4, Theorem 2.1], we see that $(R_i+P)-P$ modulo its radical is a total matrix ring, over a division ring, of degree at most $j(R_i)$ [3, Theorem 5.6]. Hence dim $V \le \dim ((R_1+P)-P)V + \dim ((R_2+P)-P)V \le j(R_1)+j(R_2)$, and so $j(R_1+R_2)=\max \dim V \le j(R_1)+j(R_2)$.

In the rest of the paper we shall reduce the inequality (1) for an I-ring to that for an FI-ring. Our main tool is the extended centralizer defined by R. E. Johnson [2] and we need a certain number of lemmas relating to it.

2. Let M be an S-right module. We shall use the following notations: $M^* =$ the set of all submodules N of M having the property that $N \cap N' \neq 0$ for all nonzero submodules N' of M; $\Re(M) =$ the set of all semi-endomorphisms defined on a member of M^* ; $D(\alpha) =$ the definition domain of $\alpha \in \Re(M)$; $\mathfrak{S}(M) =$ the extended centralizer of S over M; $\overline{\alpha} =$ the element of $\mathfrak{S}(M)$; $\mathfrak{S}(M) =$ the coset containing $\alpha \in \Re(M)$. For any submodule N of M we denote by ΔN the set of all $\overline{\alpha} \in \mathfrak{S}(M)$ corresponding to α such that $J_{\alpha} \subseteq D(\alpha)$ and $\alpha J_{\alpha} \subseteq N$ for some $J_{\alpha} \in M^*$. Let N^c be a maximal submodule of M disjoint to N. The homomorphism $\varepsilon_N: N+N^c \to M$, which is the identity on N and vanishes on N^c, belongs to $\Re(M)$. Evidently, $\overline{\varepsilon}_N$ is an idempotent in $\mathfrak{S}(M)$.

Lemma 1. Let N be a submodule of M. Then, $\Delta N = \overline{\varepsilon}_N \mathfrak{E}(M)$ and $\mathfrak{E}(N) \simeq \Delta N \overline{\varepsilon}_N$.

The proof is straightforward, and hence will be omitted. Lemma 2. $j(\mathfrak{E}(M)) \leq m(M)$.

Proof. $\mathfrak{E}(M)$ is a regular ring [2, Theorem 2], and so semisimple. Let $c \in \mathfrak{E}(M)$ be a nilpotent element of index r. Then, for all $1 \leq i < r$ there exist $\gamma_i \in \mathfrak{K}(M)$ such that $\overline{\gamma}_i = c$ and $\gamma_i D(\gamma_i) \subseteq D(\gamma_{i+1})$. Clearly, $J = \bigcap D(\gamma_i) \in M^*$. Hence, for all $1 \leq i < r$ we may find $\delta_i \in \mathfrak{K}(M)$ such that $\delta_i \leq \gamma_i$ and $\delta_i D(\delta_i) \subseteq D(\delta_{i+1}) \subseteq J$. We write $\beta_i = \delta_i \delta_{i-1} \cdots \delta_1$ and $\alpha_{ji} = \gamma_{j+r-i} \gamma_{j+r-i-1} \cdots \gamma_{j+1} \beta_i$ for $0 \leq j < i < r$. Then, $\overline{\alpha}_{ji} = c^r = 0$. Let Kbe the intersection of the kernels of α_{ji} for $0 \leq j < i < r$. Evidently $K \in M^*$. Since $\overline{\beta}_{r-1} = c^{r-1} \neq 0$, the set I of all $x \in K$ satisfying $\beta_{r-1} x = 0$ does not belong to M^* . Hence, $H \cap I = 0$ for some nonzero submodule H of K. Now, the sum $H + \beta_1 H + \cdots + \beta_{r-1} H$ is direct. In fact, if $\beta_i x_i = \beta_{i+1} x_{i+1} + \cdots + \beta_{r-1} x_{r-1}$, then $\beta_{r-1} x_i = \gamma_{r-1} \cdots \gamma_{i+1} \beta_i x_i = \sum_{i < j} \gamma_{r-1} \cdots \gamma_{r+i-j+1} \alpha_{ij} x_j = 0$, since $x_j \in H \subseteq K$. Hence $x_i \in I \cap H = 0$. Finally we have to show that $H \simeq \beta_i H$. Let $\beta_i x = 0$ for some $x \in H$. Then $\beta_{r-1} x = 0$, so $x \in H \cap I = 0$.

Theorem 2. Let N be a submodule of M. Then $m(N) = j(\Delta N)$.

Proof. Let N contain a submodule K which is a direct sum of n copies of a module L. Then, $\mathfrak{S}(K)$ is isomorphic to the total matrix ring of degree n over $\mathfrak{S}(L)$ [6, (8.1)]. Hence $j(\mathfrak{S}(K)) \ge n$, and so $j(\mathfrak{S}(N)) \ge n$ by Lemma 1, which implies that $j(\mathfrak{S}(N)) \ge m(N)$. Thus $j(\mathfrak{S}(N)) = m(N)$ by Lemma 2. $j(\mathfrak{S}(N)) = j(\varDelta N \bar{\epsilon}_N) = j(\varDelta N)$. Therefore $m(N) = j(\varDelta N)$, completing the proof.

Lemma 3. Let M be an S-right module satisfying the assumption of Theorem 1. Then $\Delta(N_1+N_2)=\Delta N_1+\Delta N_2$ for any submodules N_1 , N_2 of M.

Proof. In case $N_1 \cap N_2 = 0$, it is easy to see that $\Delta(N_1 + N_2) \subseteq \Delta N_1 + \Delta N_2$. If not, let $a \in N_1$, $b \in N_2$ and $a+b \neq 0$. We denote by N_3 a maximal submodule of N_2 disjoint to $N_1 \cap N_2$. Then the set T of all $y \in S$ such that $by \in (N_1 \cap N_2) + N_3$ belongs to S^* by the argument similar to that of Johnson [2, the top of p. 892]. Hence $(a+b)T \neq 0$ from the assumption. $0 \neq (a+b)z = az+bz \in N_1 + (N_1 \cap N_2) + N_3 = N_1 + N_3$. This shows that $(N_1+N_2)^* \ni N_1 + N_3$. It follows easily that $\Delta(N_1+N_2) = \Delta(N_1+N_3)$. Hence $\Delta(N_1+N_2) \subseteq \Delta N_1 + \Delta N_3$. Since the Δ -operation is evidently monotonous, we have $\Delta N_3 \subseteq \Delta N_2$ and $\Delta N_1 + \Delta N_2 \subseteq \Delta(N_1+N_2)$. Therefore $\Delta N_1 + \Delta N_2 = \Delta(N_1+N_2)$ which completes the proof.

Proof of Theorem 1. $\mathfrak{E}(M)$ is regular, and hence is an FI-ring. Therefore, from the inequality (1) for an FI-ring which we have already proved we see that $j(\Delta N_1 + \Delta N_2) \leq j(\Delta N_1) + j(\Delta N_2)$. Hence $m(N_1+N_2) = j(\varDelta(N_1+N_2)) = j(\varDelta N_1 + \varDelta N_2) \le j(\varDelta N_1) + j(\varDelta N_2) = m(N_1) + m(N_2).$

3. Lemma 4. Let S be a semisimple I-ring. Then j(S) = m(S).

Proof. First we note that the singular ideal of any semisimple I-ring is zero [6, (4.10)]. In other words, the S-right module S satisfies the assumption of Theorem 1. Hence, $\mathfrak{E}(S)$ may be regarded as a quotient ring in the sense of [2] and we have $j(S)=j(\mathfrak{E}(S))$ by virtue of [6, Theorem 5]. Now, $j(\mathfrak{E}(S))=m(S)$ from Theorem 2. Therefore j(S)=m(S), completing the proof.

Theorem 3. Let R be a right ideal of a semisimple I-ring S. Then j(R) = m(R).

Proof. It is clear that the radical N(R) of R is the left annihilator of R in R. From this it follows easily that $m(R) \leq m(R-N(R))$. Since R-N(R) is also a semisimple I-ring [4], we have j(R)=j(R-N(R))=m(R-N(R)) by Lemma 4. It is immediate from [3, Theorem 2.1] that $j(R) \leq m(R)$. Therefore j(R)=m(R), completing the proof.

In view of this theorem, the inequality (1) for any I-ring A follows readily from Theorem 1.

References

- [1] N. Jacobson: On the theory of primitive rings, Ann. Math., 48 (1947).
- [2] R. E. Johnson: The extended centralizer of a ring over a module, Proc. Amer. Math. Soc., 2 (1951).
- [3] J. Levitzki: On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc., 74 (1953).
- [4] ----: On P-soluble rings, Trans. Amer. Math. Soc., 77 (1954).
- [5] ——: The matricial rank and its application in the theory of I-rings, Revista da Faculdade de Ciências de Lisboa, 3 (1955).
- [6] Y. Utumi: On quotient rings, Osaka Math. J., 8 (1956).

No. 5]