82. The Geometry of Lattices by B-covers

By Yataro Matsushima
Gunma University, Maebashi
(Comm. by K. Kunugi, m.J.A., June 12, 1957)

We have studied certain properties of B-covers in lattices as a generalization of metric betweeness in a normed lattice [2-5]. In this note we shall consider various geometrical properties in lattices by B-covers, B^{*}-covers and B^{\dagger}-covers.
§ 1. Preliminaries
We shall use the following definition and lemmas which were obtained in [5].
$B(a, b)=\{x \mid x=(a \frown x) \smile(b \frown x)=(a \smile x) \frown(b \smile x) a, b, x \in L\}$ is the B-cover of a and b in a lattice L, and if $c \in B(a, b)$, then we shall write $a c b$.

Lemma 1. $a x b$ implies $x \frown(a \smile b)=x=x \smile(a \frown b)$.
Lemma 2. $a x b$ implies $a \frown x \geqq a \frown b, a \smile b \geqq a \smile x$.
Lemma 3. $a x_{i} b(i=1,2), a x_{1} x_{2}$ imply $x_{1} x_{2} b$.
Lemma 4. $a x b, b y c, a b c$ imply $x b y$.
Lemma 5. $a x b, b y c, a b c$ imply $a \frown y \leqq x \frown y$.
Lemma 6. (G) is equivalent to (G^{*}) in a modular lattice, where

$$
\text { (G) } \quad(a \frown c) \smile(b \frown c)=c=(a \smile c) \frown(b \smile c) \text {, }
$$

(G*) $(a \frown c) \smile(b \frown c)=c=c \smile(a \frown b)$.
Lemma 7. If L is modular, then $B(a, b)$ is a sublattice.
Lemma 8. In case L is modular, $a b c, a x b, b y c$ imply $a x c, a y c$.
Lemma 9. In case L is modular, $a b c, a x b, b y c$ imply $x y c, a x y$.
Lemma 10. In order that L be a distributive lattice it is necessary and sufficient that the condition (A) below holds for any elements a, b of L.
(A) $x \in B(a, b)$ if and only if $a \frown b \leqq x \leqq a \smile b$.

Lemma 11. For any elements a, b, c, d of L,
(1) $B(a, b)=B(c, d)$ implies $a \smile b=c \smile d, a \frown b=c \frown d$ in any lattice L;
(2) $a \smile b=c \smile d, a \frown b=c \frown d$ imply $B(a, b)=B(c, d)$, if and only if L is a distributive lattice.

Lemma 12. In case L is a complemented distributive lattice with $0, I$, then we have $B\left(a, a^{\prime}\right)=B(0, I)=L$, where $a \frown \alpha^{\prime}=0, a \smile a^{\prime}=I$.
§ 2. Relations between some B-covers
(1) $a b c$ implies $(a \frown b) b(b \frown c)$ and $(a \cup b) b(b \smile c)$.
(2) $(a \frown b) b(b \frown c)$ and $(a \smile b) b(b \smile c)$ imply $a b c$.
(3) $a b c$ implies $a(a \smile b) c$ and $a(a \frown b) c$.

Proof. Since (1), (2) are easy, we shall prove (3). We have $b=$
$(a \frown b) \smile(b \frown c) \leqq a \smile(b \frown c)$ from $a b c$, hence we have $a \smile b \leqq a \smile(b \frown c)$ $\leqq a \smile b$, and hence $a \smile b=a \smile(b \frown c)=a \smile(a \frown c) \smile(b \frown c) \leqq a \smile((a \smile b) \frown c)$ $\leqq a \smile b \smile((a \smile b) \frown c)=a \smile b$, and consequently $a \smile((a \smile b) \frown c)=a \smile b$, that is, $a(a \smile b) c$. The second part of (3) may be proved similarly. It follows that $x \in B(a, b)$ implies $a \smile x, a \frown x \in B(a, b)$.
(4) Let $B(a, b)=X, B(b, c)=Y, B(c, d)=Z$, and assume that abc, acd, then we have
(1) bcd in any lattice,
(2) abd in a modular lattice,
(3) XYZ in a modular lattice.

Proof. (1) is implied by Lemma 4, and (2) by Lemma 8. To prove (3), we take $x \in X, y \in Y, z \in Z$; then $b c d$, byc imply byd by Lemma 8 , $a b d, b y d$ imply $a y d$ by Lemma $8, a b c, a x b, b y c$ imply $a x y$ by Lemma 9 , $a y d, a x y$ imply $x y d$ by Lemma 4, $b c d, b y c, c z d$ imply $y z d$ by Lemma 9 , and hence $x y d, y z d$ imply $x y z$ by Lemma 4.
(5) In case L is modular, abo, aod, ocd imply Xo Y, where $B(a, b)$ $=X, B(c, d)=Y$.

Proof. If we take $x \in X, y \in Y$, then ocd, cyd imply oyd by Lemma 8, aod, oyd imply aoy by Lemma 4, abo, axb imply axo by Lemma 8 , and consequently axo, aoy imply xoy by Lemma 4.
§3. B^{*}-covers and B^{\dagger}-covers
We shall define the B^{*}-cover and the B^{\dagger}-cover of a and b in a lattice L as follows; $B^{*}(a, b)=\{x \mid a b x, a, b, x \in L\}, B^{\dagger}(a, b)=\{x \mid b a x, a, b$, $x \in L\}, B^{\dagger}\left(a, B^{*}(a, b)\right)=\left\{y \mid x a y\right.$ for all $\left.x \in B^{*}(a, b)\right\}$, etc.
(1) $B^{\dagger}\left(a, B^{*}(a, b)\right) \subset B^{\dagger}(a, b)$.
(2) $B(a, B(a, b)) \subset B(a, b), B^{*}\left(a, B^{*}(a, b)\right) \subset B^{*}(a, b)$.
(3) $B\left(a, B^{\dagger}(a, b)\right) \subset B^{\dagger}(a, b)$.

Proof. Since (1), (2) are trivial, we have only to prove (3). If we take $y \in B\left(a, B^{\dagger}(a, b)\right)$, then $b a x$, $a y x$ imply bay by Lemma 4 , and hence y belongs to $B^{\dagger}(a, b)$.
(4) For any elements a, b of L, we have the following equality. $B^{\dagger}(a, B(a, b))=B^{\dagger}(a, b)$.
Proof. Since it is obvious that $B^{\dagger}(a, B(a, b)) \subset B^{\dagger}(a, b)$, we may prove that $B^{\dagger}(a, B(a, b)) \supset B^{\dagger}(a, b)$. If we take x from $B^{\dagger}(a, b)$, then bax with bya implies xay by Lemma 4, hence x belongs to $B^{\dagger}(a, B(a, b))$.
(5) In order that L be a modular lattice it is necessary and sufficient that the equality below holds for any elements a, b of L. $B^{*}(a, B(a, b))=B^{*}(a, b), B\left(a, B^{*}(a, b)\right)=B(a, b)$.
Proof. Suppose that L is a modular lattice; then it is obvious that $B^{*}(a, B(a, b)) \subset B^{*}(a, b)$, so we have only to prove that $B^{*}(a, B(a$, b)) $\supset B^{*}(a, b)$. If we take x from $B^{*}(a, b)$, then for any element y of $B(a, b)$ we have $a y x$ by Lemma 8 , and hence x belongs to $B^{*}(a, B(a, b))$. Similarly we have the other equality. If L is not modular, then there
exist five elements a, b, c, x, y such that $c=a \frown y=x \frown y, b=a \smile y=x \smile y$, $c<a<x<b$. In this case we have $B^{*}(a, B(a, b))=\{b\}, B^{*}(a, b)=\{b, y\}$, $B(a, b)=\{a, x, b\}, B\left(a, B^{*}(a, b)\right)=\{a, b\}$, and hence the equality does not hold.
(6) $B^{\dagger}\left(a, B\left(a, B^{*}(a, b)\right)\right)=B^{\dagger}(a, b)$.

Proof. $B(a, b) \supset B\left(a, B^{*}(a, b)\right) \ni b$, and hence we have $B^{\dagger}(a, b)=$ $B^{\dagger}(a, B(a, b)) \subset B^{\dagger}\left(a, B\left(a, B^{*}(a, b)\right)\right) \subset B^{\dagger}(a, b)$ by (4), §3, and then we have $B^{\dagger}\left(a, B\left(a, B^{*}(a, b)\right)\right)=B^{\dagger}(a, b)$.
§4. Structure of lattices
(1) In a lattice L, suppose that $B^{*}(b, B(b, a \smile b))=a \smile b$; then
(1) $a \smile b$ is a maximal element;
(2) if a and b are non-comparable, then there is at least one element x in L such that $b<x<a \smile b$ and x does not belong to $B(a, b)$.

Proof. (1) Suppose that $x \geqq a \smile b$; then for any $y \in B(b, a \smile b)$ we have $b y x$ from $b \leqq y \leqq a \smile b \leqq x$, and hence x belongs to $B^{*}(b, B(b, a \smile b)$). Accordingly we have $x=a \smile b$ by hypothesis. (2) If $a \cup b$ covers b, then $B(b, a \smile b)=\{b, a \smile b\}, B^{*}(b, B(b, a \smile b))=\{a \smile b, a, \cdots\}$, and hence the equality does not hold. Moreover, if $x_{i} \in B(a, b)$ for all x_{i} such that $b<x_{i}<a \smile b$, then we have $B(b, a \smile b)=\left\{b, x_{i}, a \smile b\right\}, B^{*}(b, B(b, a \smile b))$ $=\{a \smile b, a, \cdots\}$, and hence the equality does not hold, too. This completes the proof.
(2) Following L. R. Wilcox [1], (a, b) was called a modular pair when $x \leqq b$ implies $(x \smile a) \frown b=x \smile(a \frown b)$ and denoted by $(a, b) M$. We shall now define a relative modular pair $(a, b) M^{*}$ when $a \frown b \leqq x \leqq b$ implies $(x \smile a) \frown b=x \smile(a \frown b)$.
(1) $B(b, a \frown b) \subset B(a, b)$ implies $(a, b) M^{*}$ and conversely $(a, b) M^{*}$ implies $B(b, a \frown b) \subset B(a, b)$.

Proof. For x_{1} such that $a \frown b \leqq x_{1} \leqq b$ and $a x_{1} b$ we have $x_{1}=\left(x_{1} \smile a\right)$ $\frown\left(x_{1} \smile b\right)=\left(x_{1} \smile a\right) \frown b$; on the other hand we have $x_{1} \smile(a \frown b)=x_{1}$ from $x_{1} \geqq a \frown b$. Thus we have $(a, b) M^{*}$. Conversely assume that $(a, b) M^{*}$; then we have $\left(a \frown x_{1}\right) \smile\left(b \frown x_{1}\right)=\left(a \frown x_{1}\right) \smile x_{1}=x_{1},\left(a \smile x_{1}\right) \frown\left(b \smile x_{1}\right)=\left(a \smile x_{1}\right)$ $\frown b=x_{1} \smile(a \frown b)=x_{1}$, that is, $a x_{1} b$.
(2) $(a, b) M^{*}$ implies $(a, b) M$ and conversely ($\left.a, b\right) M$ implies $(a, b) M^{*}$.

Proof. Let $b^{\prime \prime} \leqq b$. If we put $b^{\prime}=b^{\prime \prime} \smile(a \frown b)$, then $a \frown b \leqq b^{\prime} \leqq b$. Hence we have $b^{\prime}=b^{\prime \prime} \smile(a \frown b) \leqq\left(b^{\prime \prime} \smile a\right) \frown b=\left(b^{\prime} \smile a\right) \frown\left(b^{\prime \prime} \smile a\right) \frown b=\left(b^{\prime} \smile\right.$ $(a \frown b)) \frown\left(b^{\prime \prime} \smile a\right)=b^{\prime} \frown\left(b^{\prime \prime} \smile a\right) \leqq b^{\prime}$ by $(a, b) M^{*}$, and hence we have $\left(b^{\prime \prime} \smile a\right)$ $\frown b=b^{\prime \prime} \smile(a \frown b)$ for $b^{\prime \prime} \leqq b$. Consequently we have $(a, b) M$. It is easy to prove the converse.
(3) A lattice L of finite length is a semi-modular lattice whenever $(a, b) M^{*}$ is symmetric on a and b.
(3) Suppose that $B(a, b) \supset B(a, a \frown b)+B(b, a \smile b)$; then $a / a \frown b$ is isomorphic to $a \smile b / b$.

Proof. From $B(a, b) \supset B(a, a \frown b)$, we have $a x_{i} b(i=1,2, \cdots)$ for
any $x_{i} \in B(a, a \frown b)$. Then $b \smile x_{i}$ belongs to $B(a, b)$ by (3), $\S 2$, and if $b \smile x_{1}=b \smile x_{2}$, then we have $x_{1}=x_{2}$ from $a x_{i} b(i=1,2, \cdots)$. Accordingly $x_{1} \neq x_{2}$ implies $b \smile x_{1} \neq b \smile x_{2}$. In the same way, if $y_{1} \neq y_{2}$ where y_{i} $(i=1,2) \in B(b, a \smile b)$, then we have $a \frown y_{1} \neq a \frown y_{2}$, and $a \frown y_{i} \in B(a, b)$. Furthermore this mapping preserves order. But we have $a \frown(b \smile x)$ $=(a \smile x) \frown(b \smile x)=x$ for all $x \in B(a, a \frown b)$ by $a x b$, dually $b \smile(a \frown y)=y$ for all $y \in B(b, a \smile b)$, hence the two correspondences are inverses, thus we conclude the proof.
§5. Product of B^{*}-covers
(1) In any lattice $L, B^{*}(a \smile b, b) \frown B^{*}(a \frown b, b)=B^{*}(a, b)$.

Proof. It is obtained from (1), (2), § 2.
(2) In case L is modular, let $B^{*}(b, a)=X, B(a, b)=Y, B^{*}(a, b)$ $=Z$; then $X b Z$ implies $X Y Z$.

Proof. Let $x \in X, y \in Y, z \in Z$, and assume that $x b z$, then $x a b$, ayb imply $x y b$ by Lemma $8, x y b, x b z$ imply $x y z$ by Lemma 8 , this completes the proof.
(3) We have
(1) $B^{*}(a \frown b, b) \frown B^{*}(a \smile b, b) \subset B^{*}(a, a \smile b) \frown B^{*}(a, a \frown b)$ in any lattice;
(2) $B^{*}(a \frown b, b) \frown B^{*}(a \smile b, b)=B^{*}(a, a \smile b) \frown B^{*}(a, a \frown b)$ in a distributive lattice.

Proof. $a b x$ implies $a(a \smile b) x, a(a \frown b) x$ by (3), § 2, and $B^{*}(a, b)=$ $B^{*}(a \smile b, b) \frown B^{*}(a \frown b, b)$ from (1), $\S 5$, and hence we have the proof of (1). In case L is distributive, if we take x from the right hand, then we have $a \smile x \geqq a \smile b \geqq b, b \geqq a \frown b \geqq a \frown x$ by Lemma 2 , and hence by Lemma 10 we have $a b x$ since $a \smile x \geqq b \geqq a \frown x$.
(4) Let $P=B^{*}(a \smile b, a \frown b), ~ Q=B^{*}(a, a \frown b) \frown B^{*}(b, a \frown b), R=B^{*}$ $(a \smile b, a) \frown B^{*}(a \cup b, b)$; then we have
(1) $Q \supset P$ in any lattice;
(2) $Q \supset R=P$ in a modular lattice;
(3) $Q=R=P$ in a distributive lattice.

Proof. (1) Let $x \in P$; then $(a \smile b)(a \frown b) x,(a \smile b) a(a \frown b)$ imply $a(a \frown b) x$ by Lemma 4, and $(a \smile b)(a \frown b) x$, $(a \smile b) b(a \frown b)$ imply $b(a \frown b) x$ by Lemma 4, hence we have $P \subset Q$. (2) By Lemma 7, $(a \smile b) a x$, $(a \smile b) b x$ imply $(a \smile b)(a \frown b) x$, and by Lemma 4, $(a \smile b)(a \frown b) x,(a \smile b) a(a \frown b)$, $(a \smile b) b(a \frown b)$ imply $a(a \frown b) x, b(a \frown b) x$, hence we have $R \subset P \subset Q$. On the other hand $(a \smile b)(a \frown b) x,(a \smile b) a(a \frown b),(a \smile b) b(a \frown b)$ imply $(a \smile b) a x$, $(a \smile b) b x$ by Lemma 8 , that is, $P \subset R$. Accordingly we have $Q \supset R=P$. (3) Let $x \in Q$; then we have $a \frown x \leqq a \frown b \leqq a \smile x, b \frown x \leqq a \frown b \leqq b \smile x$ by $a(a \frown b) x, b(a \frown b) x$ and Lemma 2, and hence we obtain $x \frown(a \smile b) \leqq a \frown b$ $\leqq x \smile(a \smile b)$, that is, $(a \smile b)(a \frown b) x$ by Lemma 10. Consequently we have $Q \subset P$, and hence we obtain $P=Q=R$ by (2).
(5) Let a and b of L be non-comparable and let $X_{\alpha}=\{\alpha \mid \alpha \smile \alpha$
$=b \smile \alpha, a \frown \alpha=b \frown \alpha, a, b, \alpha \in L\}$.
(1) $B^{*}(a, \alpha)=B^{*}(\alpha \frown b, \alpha) \frown B^{*}(a \smile b, \alpha)=B^{*}(b, \alpha)$.

Proof. It is implied from (1), § 5.
(2) $B^{*}(a, \alpha) \subset B^{*}(a, a \smile b) \frown B^{*}(b, a \smile b) \frown B^{*}(a, a \frown b) \frown B^{*}(b, a \frown b)$.

Proof. By (3), § $2 a \alpha x$ implies $a(a \smile \alpha) x=a(a \smile b) x$, and $a \alpha x$ implies $a(a \frown \alpha) x=a(a \frown b) x$. Since $a \alpha x$ implies $b \alpha x$ and conversely from (1), $a \alpha x$ implies $b(a \smile b) x$ and $b(a \frown b) x$.
(3) In case L is modular, we have $\sum B^{*}\left(a, \alpha_{i}\right)=B^{*}(a, a \smile b) \frown$ $B^{*}(b, a \smile b) \frown B^{*}(a, a \frown b) \frown B^{*}(b, a \frown b)$, where $\alpha_{i} \in X_{\alpha}$.

Proof. By (2) we may prove that if we take x from the right hand, then x belongs to the left hand. We have $a \frown((a \frown b) \smile x)=a \frown b$, $a \smile((a \smile b) \frown x)=a \smile b$ from $a(a \smile b) x, a(a \frown b) x$.
Now let $\beta_{0}=(a \frown b) \smile((a \smile b) \frown x)=(a \smile b) \frown((a \frown b) \smile x)$, then we have (i) $(a \frown b) \beta_{0}(a \smile b)$ since $a \frown b \leqq \beta_{0} \leqq(a \frown b) \smile x$, $(a \smile b) \frown x \leqq \beta_{0} \leqq a \smile b$, and (ii) $(a \frown b) \beta_{0} x$ since $(a \frown b) \smile\left(\beta_{0} \frown x\right)=\beta_{0} \frown((a \frown b) \smile x)=\beta_{0}$, and (iii) $(a \smile b) \beta_{0} x$ since $(a \smile b) \frown\left(\beta_{0} \smile x\right)=\beta_{0} \smile((a \smile b) \frown x)=\beta_{0}$. Hence we have $a \beta_{0} x$ from (ii) and (iii) and (1), $\S 5$, where $\beta_{0} \in X_{\alpha}$ by (i). This completes the proof.
(6) (1) In any lattice $a b_{1} b_{2}$ implies $B^{*}\left(a, b_{2}\right) \subset B^{*}\left(b_{1}, b_{2}\right)$.

Proof. By Lemma $4 a b_{1} b_{2}, a b_{2} x$ imply $b_{1} b_{2} x$.
(2) In case L is modular, $a b_{1} b_{2}$ is equivalent to $B^{*}\left(a, b_{2}\right) \subset B^{*}\left(a, b_{1}\right)$.

Proof. By Lemma $8 a b_{1} b_{2}, a b_{2} x$ imply $a b_{1} x$. Conversely if $B^{*}\left(a, b_{2}\right)$ $\subset B^{*}\left(a, b_{1}\right)$, then we have $a b_{1} b_{2}$ since $b_{2} \in B^{*}\left(a, b_{1}\right)$.
(7) Let $b_{1} a b_{2}, b_{1} \smile b_{2}=c, b_{1} \frown b_{2}=d$; then we have
(1) $B^{*}\left(a, b_{1}\right) \frown B^{*}\left(a, b_{2}\right) \subset B^{*}(a, c) \frown B^{*}(a, d)$ in a modular lattice;
(2) $B^{*}\left(a, b_{1}\right) \frown B^{*}\left(a, b_{2}\right)=B^{*}(a, c) \frown B^{*}(a, d)$ in a distributive lattice.

Proof. (1) Assume that $b_{1} a b_{2}, a b_{2} x, a b_{1} x$, then we have $a \frown x$ $\leqq d \frown x$ since $a \frown x \leqq b_{1}, a \frown x \leqq b_{2}$; on the other hand since $b_{1} \frown b_{2}=d \leqq a$ from $b_{1} a b_{2}$ we have $d \frown x \leqq a \frown x$, and hence $a \frown x=d \frown x$. Similarly we have $a \smile x=c \smile x$. Thus we have $a \smile(c \frown x)=(a \smile x) \frown c=c$ by modular law and that is, $a c x$. In the same way we have $a d x$. (2) If $a c x, a d x$ in a distributive lattice, then we have $a \frown x \leqq b_{1}, b_{2} \leqq a \smile x$ by Lemma 2 , and we obtain $a b_{1} x, a b_{2} x$ by Lemma 10 .

References

[1] L. R. Wilcox: Modularity in the theory of lattices, Ann. Math., 40 (1939).
[2] L. M. Blumenthal and D. O. Ellis: Note on lattices, Duke Math. J., 16 (1949).
[3] Y. Matsushima: On lattice characterization of metric betweeness, Science Reports of Gunma Univ., 2 (1952).
[4] L. M. Kelley: The geometry of normed lattice, Duke Math. J., 19 (1952).
[5] Y. Matsushima: On the B-covers in lattices, Proc. Japan Acad., 32 (1956).

