81. On Closed Mappings. II

By Kiiti Morita

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by K. Kunugi, M.J.A., June 12, 1957)

1. A topological space is said to be locally peripherally compact or semicompact (=semibicompact) if every point has arbitrarily small open neighbourhoods with compact boundaries. The purpose of this note is to establish the following theorems.

Theorem 1. Let f be a quasi-compact continuous mapping of a locally peripherally compact Hausdorff space X onto a Hausdorff space Y such that, for each point y of Y, the inverse image $f^{-1}(y)$ is connected and the boundary $\mathfrak{B}f^{-1}(y)$ of $f^{-1}(y)$ is compact. Then f is a closed mapping and Y is locally peripherally compact.

Theorem 2. Let f be a closed continuous mapping of a locally peripherally compact Hausdorff space X onto a locally peripherally compact Hausdorff space Y such that $\mathfrak{B}f^{-1}(y)$ is compact for each point y of Y. Then f can be extended to a continuous mapping of $\gamma(X)$ onto $\gamma(Y)$, where $\gamma(X)$ and $\gamma(Y)$ mean the Freudenthal compactifications of X and Y respectively.*

Our Theorem 1 generalizes a theorem of A. H. Stone [6, Theorem 2] as well as a theorem of S. Hanai [2, Theorem 3].

- 2. Proof of Theorem 1. Let X be a locally peripherally compact Hausdorff space. A finite open covering $\{G_1, \dots, G_r\}$ of X is called a γ -covering of X if $\mathfrak{B}G_i$ is compact for each i. Let $\{\mathfrak{U}_{\lambda} \mid \lambda \in \Lambda\}$ be the totality of all the γ -coverings of X. Then the following propositions are proved in our previous paper $\lceil 3 \rceil$.
- (1) For any two γ -coverings \mathfrak{U}_{λ} and \mathfrak{U}_{μ} there exists a γ -covering \mathfrak{U}_{ν} which is a refinement of \mathfrak{U}_{λ} and \mathfrak{U}_{μ} .
- (2) For any γ -covering \mathfrak{U}_{λ} there exists a γ -covering \mathfrak{U}_{μ} which is a star-refinement of \mathfrak{U}_{λ} .
- (3) For each point x of X, $\{S(x, \mathcal{U}_{\lambda}) \mid \lambda \in \Lambda\}$ is a basis of neighbourhoods of x.

Now let f be a quasi-compact continuous mapping of X onto a Hausdorff space Y such that, for each point y of Y, $f^{-1}(y)$ is connected and $\mathfrak{B}f^{-1}(y)$ is compact. Let y_0 be any point of Y and let G be any open set of X containing $f^{-1}(y_0)$. Since $\mathfrak{B}f^{-1}(y_0)$ is compact and X is locally peripherally compact, there exist a finite number of open sets H_i , $i=1,\dots,m$, of X such that $\mathfrak{B}H_i$ is compact and $H_i \subset G$ for each i, and that $\mathfrak{B}f^{-1}(y_0) \subset \{H_i \mid i=1,\dots,m\}$. Let $G_0 = [\subseteq \{H_i \mid i=1,\dots,m\}]$.

^{*)} As for the Freudenthal compactifications, cf. [3].

$$i=1,\cdots,m$$
}] \cup Int $f^{-1}(y_0)$. Then we have $f^{-1}(y_0) \subset G_0 \subset G$

and $\mathfrak{B}G_0$ is compact.

Let \mathfrak{U}_{λ_0} be an open covering $\{G_0, X - f^{-1}(y_0)\}$ of X. Then \mathfrak{U}_{λ_0} is a γ -covering of X since $\mathfrak{B}G_0$ and $\mathfrak{B}f^{-1}(y_0)$ are compact. Let us put

(5) $W_{\lambda} = S(\mathfrak{B}f^{-1}(y_0), \mathfrak{ll}_{\lambda}) \smile \operatorname{Int} f^{-1}(y_0), \quad \lambda \in \Lambda_0.$ Here we denote by Λ_0 the set of indices $\lambda \in \Lambda$ such that \mathfrak{ll}_{λ} is a refinement of $\mathfrak{ll}_{\lambda_0}$. Then we have clearly

$$(6) W_{\lambda} \subset G_0, \text{for } \lambda \in \Lambda_0.$$

Let $\{V_{\alpha}(y_0) \mid \alpha \in \Omega\}$ be a basis of open neighbourhoods of y_0 in Y. We shall prove that, for each $\alpha \in \Omega$, there exists an element λ of Λ_0 such that

$$f(W_{\lambda}) \subset V_{a}(y_{0}).$$

For each point x of $\mathfrak{B}f^{-1}(y_0)$ there exists an element $\mu(x)$ of Λ_0 such that

(8)
$$f(S(x, \mathfrak{U}_{\mu(x)}^{\Delta})) \subset V_{a}(y_{0}),$$

where \mathfrak{B}^{Δ} denotes a covering $\{S(x,\mathfrak{B}) \mid x \in X\}$ for any covering \mathfrak{B} (cf. [7]); the existence of such an index $\mu(x)$ is seen from (2), (3) and the continuity of f. Since $\mathfrak{B}f^{-1}(y_0)$ is compact, there exist a finite number of points x_i , $i=1,\dots,n$, of $\mathfrak{B}f^{-1}(y_0)$ such that

where $\mu_i = \mu(x_i)$, $i = 1, \dots, n$. Let \mathfrak{U}_{λ} be a γ -covering of X which is a refinement of \mathfrak{U}_{μ_i} for each i. Let x be any point of $S(\mathfrak{B}f^{-1}(y_0), \mathfrak{U}_{\lambda})$. Then there exists a point x' of $\mathfrak{B}f^{-1}(y_0)$ such that $x \in S(x', \mathfrak{U}_{\lambda})$. From (9) it follows that we have $x' \in S(x_i, \mathfrak{U}_{\mu_i})$ for some i. Hence we have $x \in S(x', \mathfrak{U}_{\lambda}) \subset S(S(x_i, \mathfrak{U}_{\mu_i}), \mathfrak{U}_{\lambda}) \subset S(S(x_i, \mathfrak{U}_{\mu_i}), \mathfrak{U}_{\mu_i}) = S(x_i, \mathfrak{U}_{\mu_i})$,

and from (8) we get $f(x) \in V_o(y_0)$ (it is to be noted that $\mu_i = \mu(x_i)$). Thus the existence of $\lambda \in \Lambda_0$ satisfying the condition (7) is proved.

From (7) it follows immediately that

$$\bigcap_{\lambda \in A_0} \overline{f(W_{\lambda})} \subset \bigcap_{\alpha \in \Omega} \overline{V_{\alpha}(y_0)}.$$

Since Y is a Hausdorff space and $\{V_a(y_0) \mid \alpha \in \mathcal{Q}\}$ is a basis of open neighbourhoods of y_0 , we have $\bigcap \overline{V_a(y_0)} = y_0$ and hence

$$\bigcap_{\lambda \in A_0} \overline{f(W_{\lambda})} = y_0.$$

Now we shall prove that there exists some W_{λ} , $\lambda \in \Lambda_0$ such that (12) $f^{-1}(f(W_{\lambda})) \subset G_0$.

To prove this, suppose that there exists no such $\lambda \in \Lambda_0$ satisfying (12). Then for each $\lambda \in \Lambda_0$ there exists an element y_λ of Y such that $y_\lambda \in f(W_\lambda)$, $f^{-1}(y_\lambda) \frown (X - G_0) \neq 0$. Since $f^{-1}(y_\lambda) \frown W_\lambda \neq 0$ and $W_\lambda \subset G_0$ (cf. the relation (6)), we have $f^{-1}(y_\lambda) \frown G_0 \neq 0$. Since $f^{-1}(y_\lambda)$ is connected by the assumption, we have $f^{-1}(y_\lambda) \frown \mathcal{B}G_0 \neq 0$. Therefore for each $\lambda \in \Lambda_0$ we have

$$(13) f^{-1}(\overline{f(W_{\lambda})}) \cap \mathfrak{B}G_0 \neq 0.$$

Now the family $\{f^{-1}(\overline{f(W_{\lambda})}) \frown \mathfrak{B}G_0 \mid \lambda \in \Lambda_0\}$ has the finite intersection property, since we have $W_{\mu} \subset \bigcap_{i=1}^{n} W_{\lambda_{j}}$ if \mathfrak{ll}_{μ} is a refinement of $\mathfrak{ll}_{\lambda_{j}}$ for each j. By the construction of G_0 $\mathfrak{B}G_0$ is compact. Hence we have $[\bigcap_{\lambda\in A_0}f^{-1}(\overline{f(W_\lambda)})] \cap \mathfrak{B}G_0 \neq 0.$ (14)

On the other hand, from (11) we obtain

$$\bigcap_{\lambda\in A_0}f^{-1}(\overline{f(W_\lambda)})\!=\!f^{-1}(\bigcap_{\lambda\in A_0}\overline{f(W_\lambda)})\!=\!f^{-1}(y_0)$$

 $\bigcap_{\lambda\in A_0}f^{-1}(\overline{f(W_\lambda)})\!=\!f^{-1}(\bigcap_{\lambda\in A_0}\overline{f(W_\lambda)})\!=\!f^{-1}(y_0).$ Hence we have $f^{-1}(y_0)\!\smallfrown\! \mathfrak{B} G_0\!\not=\!0$ from (14), but this is a contradiction to the relation (4). Thus the existence of $\lambda \in \Lambda_0$ satisfying (12) is proved.

The relation (12) shows that if $f^{-1}(y) \cap W_{\lambda} \neq 0$ then $f^{-1}(y) \subset G_0$. Hence $\{f^{-1}(y) \mid y \in Y\}$ is an upper semi-continuous decomposition of X. Since f is quasi-compact continuous, f is a closed mapping. proves the first assertion of Theorem 1.

- In $\lceil 6 \rceil$ A. H. Stone has proved that if f is a closed continuous mapping of a locally peripherally compact Hausdorff space X onto a Hausdorff space Y such that, for each point y of Y, $f^{-1}(y)$ is connected and $\mathfrak{B}f^{-1}(y)$ is compact, then Y is locally peripherally compact. Thus we see that Theorem 1 holds.
- 3. Proof of Theorem 2. As is proved in [5, Lemma 3], if A is a closed set of Y such that $\mathfrak{B}A$ is compact then $\mathfrak{B}f^{-1}(A)$ is compact. Hence by virture of the proof of [4, Theorem 3] we see that f can be extended to a continuous mapping of $\gamma(X)$ onto $\gamma(Y)$.
- 4. Remarks. As is observed in Stone [6], the condition that $f^{-1}(y)$ be connected for each point y of Y can not be omitted from Theorem 1 even if X is locally compact. If we omit from Theorem 1 the condition that X be locally peripherally compact, we can not conclude that f is a closed mapping; this is seen from [1, p. 70, Example 2]. Likewise we can not conclude the closedness of f without assuming the condition that $\mathfrak{B}f^{-1}(y)$ is compact for each point y of Y, as is remarked by S. Hanai [2, Example 2].

References

- [1] P. Alexandroff and H. Hopf: Topologie, I, Berlin (1935).
- [2] S. Hanai: On open mappings, Proc. Japan Acad., 33, 177-180 (1957).
- K. Morita: On bicompactifications of semibicompact spaces, Sci. Rep. Tokyo Bunrika Daigaku, Sect. A, 4, no. 94, 222-229 (1952).
- [4] K. Morita: On images of an open interval under closed continuous mappings, Proc. Japan Acad., 32, 15-19 (1956).
- [5] K. Morita: On closed mappings, Proc. Japan Acad., 32, 539-543 (1956).
- [6] A. H. Stone: Metrizability of decomposition spaces, Proc. Amer. Math. Soc., 7, 690-700 (1956).
- [7] J. W. Tukey: Convergence and Uniformity in Topology, Princeton (1940).