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(Comm. by K. KUNUGI, M.J.A., June 12, 1957)

1. In a locally compact space 2 we consider a sequence of
potentials of positive measures. In case that 9 is the r-dimensional
euclidean space R (r2), a fundamental theorem, which was proved
by Brelot [1, asserts that the inferior limit of a sequence of new-
tonian potentials is equal to a potential of a positive measure in the
complement of a exceptional set E of inner capacity zero. Cartan
[4, using the energy principle, showed that the set E is of outer
capacity zero. Recently Brelot has proved that this fact follows from
Choquet’s result [5 on the capacitability of Borel sets. The problem
of capacitability in the potential theory in a locally compact space has
not yet been solved, and so in this note we shall prove under an
additional condition that E is of outer capacity zero (see Brelot and
Choquet

2. Let 9 be a locally compact space. We consider always posi-
tive measures in/2 with compact carrier, denoted by S. Let P(P, Q)
be a positive, symmetric, continuous and real valued function defined
on t? .c2, which is finite except at the points of the diagonal set of
;r2. The potential o is defined by

U’(P)-f(p, Q) dt(Q).

In this paper will be called admissible on a compact set K, if SK
and U(P)I everywhere in t2. The supremum of the total masses
of admissible measures on K is defined to be the capacity of K and
denoted by cap (K). The inner capacity cape (A) of A9 is equal
to sup cap (K) for compact KA and the outer capacity cape (A) is
equal to inf capi () for open A. Hence, for every open set , we
have cap ()--cape (). We shall designate the common value of these
two capacities by cap (). We say that a property holds quasi every-
where in 9 if it holds at each point of .9 except at the points of a
set of outer capacity zero.

Definition 1o We shall say that a potential U is quasi continuous
in .9, if, for any positive number e, there is an open set such that
cap ()z and the restriction of U to .c2-- is continuous.

Definition 2. We say that (P satisfies the quasi continuity
principle, if the continuity of the restriction of any potential U to
S, implies the quasi continuity of U in t2.
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Clearly the quasi continuity principle follows from the continuity
principle. (For the continuity principle, see Ohtsuka [9-11, Kishi [7],
Choquet [6, Ninomiya [8.)

At first we shall assume the quasi continuity principle and prove
the following

Theorem 1. Let #n (n--l, 2,...) be measures on a compact set
K such that UnM< q-o in t2. If {/n} converges vaguely to t,
then we have

lim U- U
quasi everywhere in 2.

3. We shall prove two lemmas for later use.
Lemma 1 (Brelot [2, Lemma 5). Let t, (n--l, 2,...) be meas-

ures on a compact set K such that UM< / o. If [t} converges
vaguely to t and a potential U is quasi continuous in 2 and UI,
then we have

limfUd,-fud,.

oo. oviou fimf. it i iot o

ow imf.. eini oninuou, *or n 0,

we can find an open set such that cap () and the restriction
of U to tg-- is continuous. Put

onf
0 in .

Then f is upper semi-continuous. Hence we have a continuous func-

tion g such that g:>fand ;gdt;fdt+-;Udt+. Wecan

see that

limf U"d-vmffd
_

limfgd-fgd

On the other hand it is easily seen that

,(S)

_
Ms and fU"d, Ms.

Therefore

iifu d,. afU d,+(M+1).
Consequently we have

ii-nf u,’.d- iimfu d, fU" a.-fu d.

Lemma 2 (Cartan _4. Proposition 5-]). Every potential U is
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quasi continuous in
Proof. Since the set of points P such that U(P) +o is a G

set of outer capacity zero, we may suppose that U is finite in
For any 0 and for any positive integer n, by Lusin’s theorem,

there is a compact set K such that (tg--K)< --e-- and U is con-
2.4

tinuous on K. Then the potential U of the restriction of to
K is continuous on K, and hence, by our quasi continuity principle,
U is quasi continuous in 2. Therefore, we have an open set
such that the restriction of U to 9-- is continuous and cap ()
< e Put

2n+l

Then B, is open in 9-- and B$, is open in 9. Hence

cap (B n) cap, (B)+cap () cap (B)+ -2n+1We shall show that cap (B)
2n+"

For any compact subset e of B,

let 7 be admissible on e. Then
1 U d

K

,(9- < 2.4 ,
whence

n+l
and cap (e) 2

and hence cap(B=$=)< eThus we have seen that cap, (B)
2 1- 2--’

and that cap ()___<_, where --[J(B.). Then it follows that the
restriction of U to .c2--$ is continuous, because, on 9-$, 0 U

U.__<1 and U= is continuous.
2

By Lemmas 1 and 2 we have
Corollary. If t (n- 1, 2,. .) are positive measures on a compact

set such that U= M< + oo and that [/} converges vaguely to tt and

if a potential U 1, then we have

4. Proof of Theorem 1. As {/} converges vaguely to g,

Ulim U everywhere in 2. Hence it is sufficient to prove that

U > lim U quasi everywhere in t2. Put V inf (U% Uv=+’, ...)
and V,,-min(U’n, ..., U) (re>n). Then the sequence V.. (m--n,
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n+l,...) decreases to V as m--> and the sequence V increases
to V=lim U as n-->. For any e’:>0 we have an open set , such

that cap(,)e’ and each U- and U are continuous on 2-, by
Lemma 2. For any positive number e, we put

and
E,(e)- {P; V,,(P)-- V(P)>]

E,()-- {Peg--,; V,(P)-- U(P)s}.
E,() is open in 9--, and E,(), is open in ). Hence

cap (E.,()) cap (E3[(),) cap (E3())+cap (.)
cap, (E/())+e’. 1

We shall prove that limcap,( ,,(e))-0. We can see immediately

E,(s) and E’ ’ In fact, if

+(e) and P() tends to P0, then it follows that P0eg--, and that
lim Vn,+(P()) V,+(Po) and lim U’(P()) U(Po). If lim cap (E3[())

=a>0, we should have, for any mn, and admissible measure 7,

on a compact subset e. of ’ AsE,(e) such that 7,(e,)>
2

cap (E;,(e)) cap (,,(e)) 7,(e,), a subsequence [7,,,} of {7,}
converges vaguely to a positive measure 7, whose total mass is obvi-

ously not smaller than . Sr is contained in E3:( for every
2

sueiently large m; otherwise, there would be P. Sr--Ng,

some too, hence there would be a neighborhood S of Po sueh that
SNg;0.(s)=. hen (S)>O and %,,()-0 for every m’o+l,

which is absurd. 8inee SrN2, we have

for every sufficiently large m. On the other hand we have limf U d/

=f Ud,), by Corollary. This contradicts (2). Consequently, lim cap,

(E,,(e)) 0. Therefore, from (1), we see that limcap(E,(e))’,
and hence lim cap (E,,,(e))-0.

Now we put

and
E(e)- {P; V,(P)-- U’(P)}
E(e)-- {,P; V(P)-- U(P)s}.

Then, as En(e)E,(e) and E(e)-[_JE(e), we have cape (E())--0 and
cap(E(e))--0. Hence, by the usual argument, we see that U(P)::>
V(P) quasi everywhere in ).
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5 In Theorem 1, we have required the uniform boundedness of
U (n-l, 2...); when (P satisfies the continuity principle, this con-
dition, the uniform boundedness of U (n=l, 2,...), is not necessary.

Theorem 2. Let (P be a kernel function which satisfies the con-
tinuity principle. Let t (n=l, 2,...) be measures on a compact set
K. If {t} converges vaguely to t, then we have

lim U U
quasi everywhere in .

To prove this theorem, we shall prove, at first, the following
Lemma . Let be measures on a compact set. If {} con-

vaguely to and a potential Urn1, then it holds that fUd7verges

=.f Vd7, where V- lim U.

Proof. We assert that 7(E)=0, where
E= {P; V(P)- U(P)0}.

In fact, if 7(E)=a>0, we can take a compact set eE such that

7(e). Then, as the restriction 7’ of the measure 7 to e is admis-

sible on e, we have cap, (E) cap (e) This contradicts the fact

that E is of inner capacity zero (see 0htsuka 12, Brelot and Choquet

[3). Hence we get fUg7-fUg7-.fVg7-fVd.
--E --E

Now we shall prove Theorem 2. We proceed in the same way
as in the proof of Theorem 1. If limcap,(Eg:())=a0, then we

have an admissible measure 7, for which the inequality
a f(V --U)d

holds for every sufficiently large m. Here we let m tend to infinity,
and we have

4-
The last integral of (3) is equal to zero by Lemma 3, which is ira-
possible. Consequently, we have lim cap (E()) 0. Then, we can

prove, analogously as in the proof of Theorem 1, that V--U quasi
everywhere in 9.

6. Now we consider a family of potentials U’*} (ie I) and its
lower envelope. Using Brelot and Choquet’s method [3 we can prove

Theorem 3. Let be a locally compact space which has a count-
able base of open sets and be a kernel function which satisfies the
continuity principle. Let {} (i e I) be a family of positive measures.
Suppose that
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a) S (ie I) is contained in a compact set K;
b) the total mass t(K) M for each i e I;
c) for any two potentials U1 and U of the family U] (ieI),
there exists a potential U in this family such that U min (U%

Then we can find a positive measure t such that

U inf U

quasi everywhere in .
Proof. As Brelot and Choquet have shown, we can take a sub-

sequence {} from {} (ie I) such that U} is decreasing and {}
converges vaguely to a positive measure and that

U inf U lira U.
iI

Then, by Theorem 2, U- lim U- inf U quasi everywhere in 2.
iI

Remark. After this note was presented, G. Choquet has announced
the same result as our Theore 2 in his paper: Sur les fondements
de la thorie fine du potentiel, C.R. Acad. Sci., Paris, 244, 1606-1609
(1957).
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