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(Comm. by K. KUNUGI, M.J.A., June 12, 1967)

1. In a locally compact space £ we consider a sequence of
potentials of positive measures. In case that © is the +-dimensional
euclidean space R (+=2), a fundamental theorem, which was proved
by Brelot [17], asserts that the inferior limit of a sequence of new-
tonian potentials is equal to a potential of a positive measure in the
complement of a exceptional set K of inner capacity zero. Cartan
[4], using the energy principle, showed that the set E is of outer
capacity zero. Recently Brelot has proved that this fact follows from
Choquet’s result [5] on the capacitability of Borel sets. The problem
of capacitability in the potential theory in a locally compact space has
not yet been solved, and so in this note we shall prove under an
additional condition that E is of outer capacity zero (see Brelot and
Choquet [3]).

2. Let 2 be a locally compact space. We consider always posi-
tive measures p in £ with compact carrier, denoted by S,. Let @(P, Q)
be a positive, symmetrie, continuous and real valued function defined
on X2, which is finite except at the points of the diagonal set of
2x 2. The potential of x is defined by

U(P)= [0(P, Q) du(@Q).

In this paper u will be called admissible on a compact set K, if S,CK
and U*(P)<1 everywhere in 2. The supremum of the total masses
of admissible measures on K is defined to be the capacity of K and
denoted by cap (K). The inner capacity cap,(4) of AC L is equal
to sup cap (K) for compact K A and the outer capacity cap, (4) is
equal to inf cap, (8) for open § DA. Hence, for every open set §, we
have cap, (8)=cap, (§). We shall designate the common value of these
two capacities by cap (§). We say that a property holds quasi every-
where in 2 if it holds at each point of £ except at the points of a
set of outer capacity zero.

Definition 1. We shall say that a potential U* is quasi continuous
in ©, if, for any positive number ¢, there is an open set &, such that
cap (8;)=<e and the restriction of U* to £—§, is continuous.

Definition 2. We say that @ satisfies the quasi continuity
principle, if the continuity of the restriction of any potential U" to
S, implies the quasi continuity of U* in 2.
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Clearly the quasi continuity principle follows from the continuity
principle. (For the continuity principle, see Ohtsuka [9-11], Kishi [7],
Choquet [6], Ninomiya [8].)

At first we shall assume the quasi continuity principle and prove
the following

Theorem 1. Let u, (n=1,2,---) be measures on a compact set

K such that Un<M<+Hc tn Q. If {u,} converges vaguely to p,
then we have

lim Ot = U*
quast everywhere in Q.

3. We shall prove two lemmas for later use.

Lemma 1 (Brelot [2, Lemma 5]). Let y, (n=1,2,---) be meas-
ures on a compact set K such that Ur<M< +co. If {u,} converges
vaguely to w and a potential U is quasi continuous in Q and U’<1,

then we have
lim f Utn dy= f U*dy.
Proof. Obviously f Ut*dy <lim f Uvndy. Hence it is sufficient to

show lim f Ubtndy < f U*dyv. U’ being quasi continuous, for any >0,

we can find an open set 8, such that cap(5.)<<e and the restriction
of U® to £—35, is continuous. Put
_Ju on Q-8
J { 0 in S
Then f is upper semi-continuous. Hence we have a continuous func-

tion g such that g=>f and fgd,u gffd,u—l—szf U'du+e. We can
see that e

mf U“d,u,,:lTrﬁffd,unglimfgd,unzfgd,u
Q-8

= | Udpte= | Udute.
[7tes ]
On the other hand it is easily seen that
m(8:) = Me and f U'dy, < Me.
Se
Therefore

lim [0 d, < [ U dp+(M+1e.
Consequently we have

Ii}ﬁfU"’ndu:IiiﬁfU”dMn§fU“dp=fU“du.
Lemma 2 (Cartan [4, Proposition 5]). Ewery potential U* s
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quast continuous inm Q.

Proof. Since the set of points P such that U(P)=+ « is a G,
set of outer capacity zero, we may suppose that U* is finite in 2.
For any ¢>0 and for any positive integer n, by Lusin’s theorem,
there is a compact set K, such that /.a(.Q—Kn)<2J547 and U" is con-
tinuous on K,. Then the potential U*» of the restriction y, of u to
K, is continuous on K,, and hence, by our quasi continuity principle,
U¥» is quasi continuous in 2. Therefore, we have an open set §,
such that the restriction of U"» to £—3§, is continuous and cap (8,)

€ Put

=it

B,,:{Pe Q—8,; UXP)—U(P)> 51—}

Then B, is open in £2—3§, and B,—§, is open in 2. Hence
cap (B,—8§,) < cap,; (B,)+cap (8,) < cap, (B,)+ 2—%-1
We shall show that cap, (Bn)géfw

e For any compact subset e of B,

let v be admissible on e. Then
1
il < v [Py d — l?“t‘d
2ﬂ(e) = f(U U¥n)dy f #

Q-K,

<wW(@—K)< ¢,
= u ) 2.4"
whence

ye)< 5 and cap(e)=< 2’511

£
2w
and that cap(§,)<<e, where 8,=J(B,—8,). Then it follows that the
restriction of U* to £—S§, is continuous, because, on £—35, 0= U*

Thus we have seen that cap, (Bn)gz‘:

~, and hence cap (B, ~8,)=

— Ut §—21—n and U is continuous.

By Lemmas 1 and 2 we have

Corollary. If u, (n=1,2,---) are positive measures on a compact
set such that U'n < M<+co and that {u,} converges vaguely to u and
if a potential U®=<1, then we have

lim f Ubndy = f U*dy.

4. Proof of Theorem 1. As {u,} converges vaguely to g,
U*=<lim U*» everywhere in £. Hence it is sufficient to prove that

U*=lim U*» quasi everywhere in Q. Put V,=inf (U, U'rs,.. )
and V,,=min(U",---, U*») (m=n). Then the sequence V,, (m=mn,



No. 6] Inferior Limit of a Sequence of Potentials 317

n+1,--.) decreases to V, as m—>« and the sequence V, increases
to V=lim U*» as n—>c. For any ¢>0 we have an open set & such

that cap(§,)<¢ and each U*» and U* are continuous on 2—3§. by
Lemma 2. For any positive number ¢, we put

E, .(&)={P; V,(P)—UXP)>¢}
EL(e)={PeQ—38y; V,.(P)—U"P)>¢e}.
Ef.(e) is open in £—§, and Ef,(e)—35. is open in £. Hence
cap, (B, .(¢)) = cap (Ey/.(e)—8y) = cap, (Ey.(¢))+cap (5)
= cap, (E:n(e))+¢'. (1)
We shall prove that lim cap,(Z;,())=0. We can see immediately
that Bl (YT Ein() and Bfn (CEL(S) In fact, if Pe
Ef...(e) and P tends to P, then it follows that P,e 2 —3. and that
limV, ... «(P®)=V, ,..(Po) and lim U*(P®)= U*(P,). If lim cap, (Ex .(€))
k k m
=a>0, we should have, for any m=>n, and admissible measure v, ,,

on a compact subset e,, of Ef,.(s) such that «, .(e,.) g%. As

and

cap; (Ei.(e)) = cap; (Eimn(€)) = Ya,n(€n,n), a subsequence {ynn.} of {vnm}
converges vaguely to a positive measure v, whose total mass is obvi-

ously not smaller than i;—. S, is contained in E,fj,,(%) for every

sufficiently large m; otherwise, there would be PoeST——E,f,'mo( -;—> for

some M, hence there would be a neighborhood & of P, such that
8~ Ein 1(6)=¢. Then (8)>0 and v, ,(8)=0 for every m’'=m,+1,

which is absurd. Since STCE,Ejm(—;—>, we have

o

= ADS [(Von= UMy = [(Un—UDdy  (2)

for every sufficiently large m. On the other hand we have lim f Urndy

= f U*dy by Corollary. This contradicts (2). Consequently, linrbn cap;,
(EX.(¢))=0. Therefore, from (1), we see that limcap, (&, . (¢)=¢,
and hence lim cap, (E,, ,())=0. "
Now Wén put

E.(e)={P; V,(P)— UXP)>¢}

E@E)={P; V(P)— U“P)>¢}.
Then, as E, () C E, ,.(¢) and E(e)= ) E,(¢), we have cap, (,(¢))=0 and

cap, (E(e))=0. Hence, by the usual argument, we see that U*(P)=
V(P) quasi everywhere in 2.

and
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5. In Theorem 1, we have required the uniform boundedness of
U'» (n=1,2...); when @ satisfies the continuity principle, this con-
dition, the uniform boundedness of U*» (n=1,2,.--), is not necessary.

Theorem 2. Let @ be a kernel function which satisfies the con-
tinuity principle. Let u, (n=1,2,---) be measures on a compact set
K. If {u,} converges vaguely to p, then we have

lim U¥» = U*

quast everywhere in Q.

To prove this theorem, we shall prove, at first, the following

Lemma 3. Let w, be measures on a compact set. If {u,} con-

verges vaguely to p and a potential UT<1, then it holds that f Utdy
=dery, where V =lim Ut»,
Proof. We assert that (E)=0, where
E={P; V(P)— U%P)>0}.
In fact, if y(E)=a>0, we can take a compact set e E such that

ry(e)g%. Then, as the restriction o' of the measure ¢ to e is admis-
sible on e, we have cap,(E)=cap (e) g%. This contradicts the fact

that F is of inner capacity zero (see Ohtsuka [127], Brelot and Choquet
[8]). Hence we get [ U'dy= | Utdy= | Vdy= [ Vdy.
Jurt= [ o= ] var= |

Now we shall prove Theorem 2. We proceed in the same way
as in the proof of Theorem 1. If lim cap,(EZ,.(¢))=a>0, then we

have an admissible measure v, for which the inequality
%s“éf(vn,m_ Uu)d,y

holds for every sufficiently large m. Here we let m tend to infinity,
and we have

,?Zféf(vn— U*’“)dfyéf(V— U*) dy. (3)

The last integral of (8) is equal to zero by Lemma 3, which is im-
possible. Consequently, we have lim cap, (#:,.(¢))=0. Then, we can

prove, analogously as in the proof of Theorem 1, that V =U" quasi
everywhere in Q.
6. Now we consider a family of potentials {U*:} (¢el) and its
lower envelope. Using Brelot and Choquet’s method [3] we can prove
Theorem 3. Let 2 be a locally compact space which has a count-
able base of open sets and @ be a kernel function which satisfies the

continuity principle. Let {u} (icI) be a family of positive measures.
Suppose that
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a) S,, (icI) is contained in a compact set K;
b) the total mass w,(K)=<M for each i€l
c) for amy two potentials U*r and U': of the family {U"} (iel),
there exists a potential U's in this family such that Ubs < min (U",
U,
Then we can find a positive measure u such that

U* = inf U

er

quast everywhere in Q.

Proof. As Brelot and Choquet have shown, we can take a sub-
sequence {u,} from {u} (¢€I) such that {U*r} is decreasing and {u,}
converges vaguely to a positive measure p and that

U* < inf U% < lim Ut»,

el n
Then, by Theorem 2, U"*=1lim U%» =inf U*¢* quasi everywhere in 2.
n el
Remark. After this note was presented, G. Choquet has announced
the same result as our Theorem, 2 in his paper: Sur les fondements
de la théorie fine du potentiel, C. R. Acad. Sci., Paris, 244, 1606-1609
(1957).
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