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74. On the Divisibility of Dedekind’s Zeta-Functions

By Makoto ISHIDA
Mathematical Institute, University of Tokyo
(Comm. by Z. SUETUNA, M.J.A., June 12, 1957)

Let & be an algebraic number field of finite degree and K a finite
extension over k. Then it was conjectured by E. Artin [2] that the
Dedekind’s zeta-function {,(s) of k divides the Dedekind’s zeta-function
Cx(s) of K, in the sense that the quotient (.(s)/(.(s) is an integral
function of the complex variable s. Already R. Dedekind [4] has
proved that {(s) divides {x(s), if K is a “rein” cubic extension of
the rational field k. E. Artin [2], H. Aramata [1] and R. Brauer
[8] have made contributions to this conjecture and obtained indeed
affirmative answers in several special cases.

In this paper, using Artin’s L-series and Brauer’s group-theoretical
lemma, I shall prove a theorem which includes all those former results
as special cases. And here I wish to express my hearty gratitude to
Prof. Z. Suetuna for his encouragement.

In the following, for sake of simplicity, we shall use the follow-
ing notation: If U is a finite group, 8 the character of the regular
representation of U and 2, the principal character of U, then we
shall denote the character 6—4i, by X(U).

Lemma 1 (R. Brauer [3]). Let G be a group of finite order g.
Then the character X(G) of G can be expressed as follows:

(1) X(@)= S, 5, 6 Sy,
where H, ranges over all the cyclic subgroups of order #,>1 of G
and & (@ over the characters of G induced by all the irreducible

characters Vi of H,. Furthermore, the coefficients ¢ of Eyo in

(1) are non-negative rational numbers with denominators g, and given
by

(2) &=L (o) = S 452",

where o* ranges over all the generators of H,.

Remarking that the numerator of ¢ depends only on H, and ¥4,
we have the following important

Lemma 2. Let G and g be the same as in Lemma 1. Let H be
an arbitrary subgroup of order ~>1 of G. Then we can rewrite (1)
as follows:

(3) X(G)= %EXuI)"" Ef‘loﬂ;ﬂ' DITARNS 57
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where Z,, is the character of G induced by X(H) and H, ranges
over all the cyclic subgroups of order h,>1 of G which are not con-
tained in H.

Proof. If we consider Lemma 1 with regard to the finite group
H, we have

(4) X(H)= Sn, 3, 87 x50
where H_ and Xy have the similar meaning as H, and E'\éo) in Lemma
1, but the coefficients € are given by

= lplhe) = S ¥}

Then, according to the remark stated above, we have 5§”")=—gh— 50,

and consequently
(4") {;-X(H): S >0 6 X g

If we substitute the character of G induced by the character (4") of
H in (1), then we have (8) easily.

Lemma 3. Let G and H be the same as in Lemmas 1 and 2.
Let cHs! be a conjugate of H in G. Then we have
( 5) EX(H) = EX(ch_ln
where Zy,, and Zy.u.-!, are the characters of G induced by X(H)
and X(oHo ') respectively.

Proof. Any element of ¢Ho™! can be uniquely represented in the
form oro~! where + is an element of H. If we define a character x°
of oHo™' by x°(oro*)=x(+) where x is a character of H, we have a
one-to-one correspondence between the characters of H and those of
oHs'. By this correspondence, it is clear that Lemma 3 is true.

Main Theorem. Let I be an algebraic number field of finite degree,
K a finite extension over k and K* the smallest Galois extension over
k which contains K. The Galois groups of K*|k and K*/K are denoted
by G and H respectively. If H satisfies the following condition:

(I) if an element o of G does not belong to H, then the intersection
of H and oHo ' contains only the identity element,
then the quotient (. (s)/C.(s) is an integral function.

Furthermore, by a theorem of Frobenius [6], all the elements of
G which do mot belong to any conjugate of H im G form with the
identity element a mormal subgroup M of G wunder the condition (I).

If K, is the intermediate field corresponding to M, then we have the
Sollowing equality:

(6) {C x(8) }EK"”"J = Cux(s).

Culs) Cx,(5)
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Before proving the main theorem, we shall transform the condition
(I) into the conditions (II) and (III). The proof of the equivalence
of the three conditions is trivial.

Theorem 1. Let k, K and K* be the same as in the above theorem.
Let « be an element of K such that K=k(a) and aP=a, a®,---, a™
its conjugates over k. Accordingly K*=k(a®, a®,- .-, a). If a satis-
fies the following condition:

(I1) 4f a®Za (le. 15x1), then K* coincides with k(a, a®),
then the same results as in the main theorem hold.

Theorem 2. Let k, K, K* a®, a®,.-+,a™ and G be the same as
in the above two theorems. If G satisfies the following condition:

(III) if an element o of G leaves two of a'®’, a®,. .., a™ invariant,
then o 1s the identity element,
then the same results as in the main theorem hold.

As a corollary of Theorems 1 and 2, we can easily show the
results proved by R. Dedekind [4] and by E. Artin [2].

Proof of the Main Theorem. H is assumed to satisfy the con-
dition (I).

First case: The order of H is equal to 1. Then K is a Galois
extension over k, and this is the case proved by H. Aramata [1] and
by R. Brauer [3]. In this case, by the method of R. Brauer with
Lemma 1, we can easily prove the theorem. Here the equality (6)
is trivial.

Second case: The order of H is larger than 1. First we shall
show that the normalizer N(H) of H coincides with H. In fact, if
o is any element of N(H), then oHos ' coincides with H; and con-
sequently, by the condition (I), ¢ must belong to H. Thus clearly

N(H) coincides with H. Accordingly there are exactly % different

conjugates of H in G where g and % are the orders of G and H
respectively. Furthermore any two of those different conjugates
intersect only with the identity element each other.

Now remembering the definition of the normal subgroup M, we
can divide the sum >}, in (1) as follows:

2, = ZHGOQH'I_EHchrxH'c;l'I‘ ce
+ ZH%- (ST HTL + ZHPQM’

where r,=1 (identity element), -+, 7,_; are the complete system
of the representatives of the cosets of G by H=N(H), and H,, and
H, range over all the cyclic subgroups of order A, >1 and h,>1 of
G which are contained in +Hr;' and M respectively. Then by (7)
and Lemma 2 with (3) we can rewrite (1) as follows:

(7)
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X(G)=%EX<H)+% EX('clH'c;l)' *
(8) h o m

o]
=

F— Excep_ gty T — Exany
g g

where m is the order of M. Furthermore, Lemma 3 shows
(9) EX(II)ZEX(mllI'cI'l): ce =5xmn_1m;,l_1>-

Since 7 is equal to —'Z— exactly, we have combining (8) and (9)

(10) 9 X(@)=L 5yt Exers
m m

If we consider then the Artin’s L-series with the character (10) of
G in the Galois extension K*/k, we have the equality (6) easily, as

I s equal to [K,:k]. Since K* is a Galois extension over K, the
m

right side of the equality (6) is an integral function (cf. the first
case of the proof). Consequently the suitable power of the guotient
Cx(8)/C(s) is integral. Since this quotient is meromorphic, it must
be integral. Thus the proof is completed.

Considering the residue of Dedekind’s zeta-function at s=1, we
can show, by (6), a relation between the class numbers of the four
fields k, K, K, and K*.

Finally I should like to remark that the main theorem proved
above is the true extension of the former results, in the sense that
there exist infinitely many extensions K over k such that the inte-
grality of the quotient {.(s)/{,(s) ean be proved by the main theorem
but not by all the former results. The Galois group G where the
assumption of Theorem 2 holds is characterized by the following two
conditions, if we consider G as a finite permutation group:

1) G is transitive;

2) an element of G which leaves two objects invariant is only the
identity element.

Then, in order to obtain the above remark, the following three theo-
rems are sufficient.

Theorem 3 (H. Zassenhaus [7]). A finite permutation group G
satisfies the above two conditions 1) and 2) if and only if G is rep-
resented as a linear transformation group in a finite “Fastkorper”.

Theorem 4 (H. Zassenhaus [7]). There exist infinitely many
finite “Fastkorper” which are not finite fields GF(p") such that the
linear transformation groups in them are solvable. Furthermore, in
such a group, the subgroup of all the transformations which leave a
fixed object invariant is maximal.
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Theorem 5 (I. R. Safarevié [6]). Let k be an algebraic number
field and G a finite solvable group. Then there exists a Galois exten-
sion K* over k with a Galois group isomorphic to G.
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