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Fourier Series. XVI. The Gibbs Phenomenon of Partial
Sums and Cesdro Means of Fourier Series. 2

By Shin-ichi IzuMI and Masako SAT(3

Department of Mathematics, Hokkaid5 University, Sapporo, Japan
(Comm. by Z. SUETUNA, M.;LA., June 12, 1957)

5. Proof of Theorem 7. Let
n-2 (k-1,2,...).

Then 2V’ rr/n-2rr/V=2rr/2- 2rr/n_.
Let (x) be an even concave function which is zero for x/2n

and such that its curve touches y-axis at y-1 and touches x-axis
at x--v/2n. Further suppose )

t
for all 0< t /2n.

Let
f.()-.(+(z-i/z)/n.) in ((z-i)/n,. z/n,).

0 otherwise,
(j=;/os n., (/os n.)+ 1,..., V),

and

Then

f(x) EL(x).

s(rr/n, f)-s(rr/n, f) +o(1).
If we set @(t)-cp(t-krr/2n), then

8n(rr/n, f) I__ f(t q- rr/n)-sin-n-t- dt +o(1)

, ) @(t) sin nt dt +o(1)
rr = -i/" o t+2]rr/n

1 f/ n@(t) sin nt dt +o(1)

A log log n.nf%(t) sin nt dto(1)

A log log n.nJ %() dr+o(1)

A log log n/Vl log n.
Hence s(/n, f) as k . Thus partial sums of Fourier series
of f() present the Gibbs phenomenon at

1) The base of logarithm is 2.
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and

On the other hand, we can easily prove that

f (s(u)+s(-u)) du=o(t)

f(x-u)) du=o(t)

uniformly for all x, and then by Theorem 5 Cesro means do not
present the Gibbs phenomenon. Thus Theorem 7 is proved.

By a slight modification of above example we can see that the
condition (1) in Theorem 3 is best possible; that is, for any function
(n) tending to infinity, however slowly may be, there is a function
f(x) such that

f (f f e -o uniformly in

and partial sums o Fourier series ol f(t)presen he Gibbs phenome-
non a a certain poinL

In Theorem 4 we ean also say ha he eondiion (1) is best
possible. To see his we have o use ()modified sueh Cha
height tends to zero as k.

6. Proof of Theorem 9. Let 0<r<l and let (m) and (n) be
increasing sequences of integers, which will be determined later.

For a moment set m-m, n-n, a-l+r/2 and N=n+(l+r)/2
Let fl be an even integer determined later and we define the function
f(t) such that
6 ) A(t)----(t--/N)+/((a++I)/N+2j/N)+

in the interval
((a+fl)/N+2j/N, (a++l)/N+2j/N)

where j= 0, 1, 2,..., m and otherwise f(t)-O. Then
( 7 --1 A(t) 0.
Using the notation in 4, we write

)(IN,f)__1 f(t+IN)L(t) dt

+_1 A(t+fl/N)L)(t) dt+ f(t+/N)L)(t)dt
I,+I+I.

We have first

A: ((+N+I)/N+/N)*

/N
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if m is sufficiently large.
Secondly,

Finally we get

for large
Collecting above estimations we get

.(#/N,A)

> I I
r.2r+r(a__l_+_l)rr(l+r) 2r(flH-1)

13r
va-(a+fi+ 1)

+o(1).

.) f [_-l<----_(x+l)-r(x+q)+r- r(q--1) qr .1 r(q--1)
(q>l, O<r<l).
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The right side is greater than a positive constant g, if we take
suitably, depending only on r.
Let us suppose m_ and n_ are determined, then we take m

and n such that (i) m is so large that the sum in (8) is sufficiently
near to the infinite sum and (ii) (+2m)/n<l/n_. By such deter-
mined (m) and (n), we define (f(x)) and

( 9 ) f(x)- ,f(x).

Then
a(trr/N, f)-a(r/N,f) -o(1) > g+o(1),

for all k. Thus, by (7), a(x, f) presents the Gibbs phenomenon at

We shall now prove Theorem 9. Let (p) be an increasing sequence
tending to 1, and (r) be the sequence

k(k+l)/2+l:P1 k(k+l)/2+:p " (k+l)(k+2)/2:pk
In the definition (6) of f(t), we use r instead of r, and let f(t)-f(t).
Then this is the required function in Theorem 9.

Finally we have to express our hearty thanks to Prof. B. Kuttner
who read our manuscripts and pointed out many errors, and especially
removed a superfluous condition in Theorem 5.


