88. On Dowker's Problem

By Yoshiaki HAYASHI

(Comm. by K. KUNUGI, M.J.A., July 12, 1957)

In 1949, C. H. Dowker raised the question¹⁾ 'Is every normal Hausdorff space R countably paracompact (i.e. does every countable open covering of R have a locally finite open refinement)?'. In this paper, we shall give a negative answer to this problem, i.e. we shall show that there exists a normal Hausdorff space which is not countably paracompact.

(1) Let

 $R_1 = \{0, 1, 2, 3, \dots, \omega, \dots, \Omega\}$ where Ω is the first ordinal number in all 3rd-class ordinals,

 $R_2 = R_8 = \cdots = R_n = \cdots = \{0, 1, 2, 3, \cdots, \omega\}$ where each $n < \infty$, ω is the first ordinal in all 2nd-class ordinals.

For each R_i , we define its topology by the limit of ordinals as usual.²⁾

Let

$$S = R_1 \times R_2 \times R_3 \times \cdots$$

Give the weak topology of the product space for S.

Since each R_i is compact Hausdorff space, S is a compact Hausdorff space. And, therefore S is normal.

Now, $(\Omega, \omega, \omega, \omega, \cdots)$ is a point of S. Let

 $R = S - (\Omega, \omega, \omega, \omega, \cdots).$

(2) Since R is a subspace of S, R is a Hausdorff space. We shall prove that R is normal.

Let A, B be disjoint two closed sets of R.

Let \overline{A} be the closure in S of A, and \overline{B} be the closure in S of B. (i) The case of $\overline{A} \frown \overline{B} \Rightarrow (\Omega, \omega, \omega, \cdots)$.

 $\overline{A}, \overline{B}$ are disjoint two closed sets of S. Since S is normal, there exist disjoint two open sets G_0, H_0 of S such that $G_0 \supset \overline{A}, H_0 \supset \overline{B}$. $G = R \frown G_0, H = R \frown H_0$ are disjoint two open sets of R such that $G \supset A, H \supset B$.

(ii) The case of $\overline{A} \frown \overline{B} \ni (\Omega, \omega, \omega, \cdots)$.

This case never happen.

Assume $\overline{A} \frown \overline{B} \ni (\Omega, \omega, \omega, \cdots)$.

¹⁾ See [1]. (Numbers in brackets refer to the references at the end of the paper.)

²⁾ We define neighbourhoods of p as follows; for each q < p, $\{p' | q < p' \le p\}$ is a neighbourhood of p.

Y. HAYASHI

For any $\gamma < \Omega$, there exists a point $a \in A$ such that $a = (\alpha, \omega, \omega, \cdots)$ $(\gamma < \alpha < \Omega)$ by the following argument.

'Define open sets
$$U_n$$
 $(n=1, 2, 3, \dots < \infty)$ of S as follows:
 $U_n = \{p=(p_1, p_2, \dots) \mid \gamma < p_1 \le \mathcal{Q}, n-1 \le p_2 \le \omega, n-2 \le p_3 \le \omega, \dots, 1 \le p_n \le \omega, 0 \le p_n \le \omega, (i=n+1, n+2, \dots)\}.$

then

$$\left. egin{array}{ll} U_n &\frown A \neq \phi, ^{3
ightarrow} \ U_n &\frown B \neq \phi. \end{array}
ight\} (n = 1, 2, 3, \cdots)$$

Let $a_n \in U_n \frown A$, and let α_n be the first coordinate of a_n .

Consider the sequence $\alpha_1, \alpha_2, \alpha_3, \cdots$ of ordinals. Then there exists a subsequence $\{\alpha_{n_j} | j=1, 2, 3, \cdots < \infty\}$ such that $\alpha_{n_1} \le \alpha_{n_2} \le \alpha_{n_3} \le \cdots$.

Let $\alpha = \lim_{i \to \infty} \alpha_{n_i}$, then $\gamma < \alpha < \Omega$.

Let $a = (\alpha, \omega, \omega, \dots)$, then a is an accumulation point of $\{a_n \mid n < \infty\}$ and $a \in R$. As A is a closed set of R, $a \in A$ '.

By a similar argument, there exists a point $b \in B$ such that $b = (\beta, \omega, \omega, \cdots)$ $(\gamma < \beta < \Omega)$.

Now, let $a'_1 \in A$, $a'_1 = (\zeta_{a,1}, \omega, \omega, \cdots)$, $0 < \zeta_{a,1} < \Omega$. There exists such a'_1 by the above argument. As γ in the above argument is arbitrary, there exists a point $b'_1 \in B$ such that $b'_1 = (\zeta_{b,1}, \omega, \omega, \cdots)$, $\zeta_{a,1} < \zeta_{b,1} < \Omega$. And then there exists $a'_2 \in A$ such that $a'_2 = (\zeta_{a,2}, \omega, \omega, \cdots)$, $\zeta_{b,1} < \zeta_{a,2} < \Omega$. By similar arguments, we define $a'_3, a'_4, a'_5, \cdots \in A, b'_2, b'_3, b'_4, \cdots \in B$ one after another.⁴⁾ Both the sequence $\{a'_i\}$ and the sequence $\{b'_i\}$ converge to a same point $p = (\zeta, \omega, \omega, \cdots)(\zeta = \lim_{n \to \infty} \zeta_{a,n} = \lim_{n \to \infty} \zeta_{b,n} < \Omega) \in R$. As both A and B are closed sets of R, $p \in A$ and $p \in B$. This result is contradictory to $A \frown B = \phi$.

By (i), (ii), R is normal.

$$F_n = \{p = (p_1, p_2, \cdots) \mid p_1 = \mathcal{Q}, p_2 = p_3 = \cdots = p_n = \omega, 0 \le p_i \le \omega \ (i = n+1, n+2, n+3, \cdots)\} - (\mathcal{Q}, \omega, \omega, \cdots),$$

Then $F_1 \supset F_2 \supset F_3 \supset \cdots$ is a decreasing sequence of closed sets of R with vacuous intersection.

We shall prove that there exists no sequence $\{G_n | n=1,2,3,\dots < \infty\}$ of open sets of R satisfying the following conditions (Δ):

$$(\Delta) \qquad \left\{ \begin{array}{l} G_n \supset F_n \ (n=1,\,2,\,3,\cdots), \\ \bigcap_{n=1}^{\infty} \overline{G}_n = \phi \ \text{where} \ \overline{G}_n \ \text{is the closure in} \ R \ \text{of} \ G_n. \end{array} \right.$$

[Vol. 33,

³⁾ We denote the empty set by ϕ .

⁴⁾ We must use the mathematical induction in strictly.

No. 7]

Assume that there exists a sequence $\{G_n\}$ of open sets of R satisfying the conditions (Δ).

$$\begin{split} & \overline{F_n} \text{ contains} \\ & P_n = \{p = (p_1, p_2, \cdots) \mid p_1 = \mathcal{Q}, \ p_2 = p_3 = \cdots = p_n = \omega, \ p_{n+1} = p_{n+2} = \cdots = m, \\ & m = 1, 2, 3, \cdots < \omega \}. \\ & \text{Therefore, for the open set } G_n \supset F_n \text{ there exist ordinals } \hat{\xi}_{n,m} < \mathcal{Q}, \\ & c_{n,m,2} < \omega, \ c_{n,m,3} < \omega, \cdots, \ c_{n,m,n} < \omega, \ (m = 1, 2, 3, \cdots < \omega) \text{ such that} \\ & \left\{ \begin{array}{l} Q_{n,m} = \{p = (p_1, p_2, \cdots) \mid \hat{\xi}_{n,m} < p_1 \leq \mathcal{Q}, \ c_{n,m,3} < p_2 \leq \omega, \ c_{n,m,3} < p_3 \leq \omega, \cdots, \\ & c_{n,m,n} < p_n \leq \omega, \ p_{n+1} = p_{n+2} = \cdots = m \}, \\ & \bigcup_{m=1}^{m} Q_{n,m} \subset G_n. \\ & \text{Let } \hat{\xi}_n = \sup\{\hat{\xi}_{n,m}\}, \text{ and let} \\ & T_n = \{p = (p_1, p_2, \cdots) \mid \hat{\xi}_n < p_1 < \mathcal{Q}, \ p_2 = p_3 = \cdots = \omega\}, \\ & \text{then } T_n \subset \overline{G_n} \text{ by the following argument.} \\ & \cdot \text{Let } t_n \in T_n. \text{ Then} \\ & t_n = (\tau_n, \omega, \omega, \cdots) \ (\hat{\xi}_n < \tau_n < \mathcal{Q}). \\ & \text{For each } m < \omega \text{ there exists } t_{n,m} \text{ such that} \\ & \left\{ \begin{array}{l} t_{n,m} \in Q'_{n,m} = \{p = (p_1, p_2, \cdots) \mid \hat{\xi}_{n,m} < p_1 \leq \mathcal{Q}, \ p_2 = p_3 = \cdots = p_n = \omega, \\ & p_{n+1} = p_{n+2} \equiv \cdots = m\}, \\ & \text{the first coordinate of } t_{n,m} \text{ is } \tau_n. \\ \\ & \text{Consider the sequence} \\ & t_{n,1}, \ t_{n,2}, \ t_{n,3}, \cdots . \\ \\ & \text{Therefore } t_n \in \overline{G_n}. \text{ Hence we have } T_n \subset \overline{G_n}. \\ & \text{Therefore } t_n \in \overline{G_n}. \text{ Hence we have } T_n \subset \overline{G_n}. \\ & \text{Therefore } t_n \in \overline{G_n} \supset \prod_{n=1}^{\infty} T_n \supset T. \\ & \text{As } T \text{ is non-empty, } \prod_{n=1}^{n-1} \overline{G_n} \text{ is non-empty. This result is contradictory to the assumption } \prod_{n=1}^{\infty} \overline{G_n} = \phi. \\ & \text{Therefore, there exists no sequence } \{G_n\} \text{ of open sets of } R \text{ satis-fying the conditions } (\Delta). \\ & (4) We \text{ shall prove that } R \text{ is not countably paracompact.} \\ & \text{From } (2), R \text{ is a normal Hausdorff space. And, for the decreasing} \end{array} \right$$

From (2), R is a normal Hausdorff space. And, for the decreasing sequence $F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots \rightarrow \phi$ of closed sets of R which is defined in (3), from the argument in (3) there exists no decreasing sequence $G_1 \supseteq G_2 \supseteq G_3 \supseteq \cdots$ of open sets of R such that

Y. HAYASHI

$$\begin{cases} G_i \supset F_i \ (i=1, 2, 3, \cdots), \\ \bigcap_{i=1}^{\infty} \overline{G}_i = \phi. \end{cases}$$

Therefore, by the result in F. Ishikawa's paper [2], R is not countably paracompact.

Thus we conclude that R is a normal Hausdorff space which is not countably paracompact.

The author wishes to express his hearty thanks to Professor K. Kunugi for his kind advices in this study.

References

- C. H. Dowker: On countably paracompact spaces, Canadian Jour. Math., 3, 219-224 (1951).
- [2] F. Ishikawa: On countably paracompact spaces, Proc. Japan Acad., 31, 686-687 (1955).