129. A Relation between Two Realizations of Complete Semi-simplicial Complexes

By Yukihiro Kodama

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1957)

1. Let S(X) be a singular complex of a topological space X. J. B. Giever [2] constructed a polytope P(X) which is a geometric realization of S(X) and whose homotopy groups are isomorphic to those of X. Let K be a complete semi-simplicial (c.s.s.) complex [1]. S. T. Hu [3] constructed a polytope P(K), which is a geometric realization of K. Hu's realization associated with S(X) is homeomorphic to Giever's realization P(X). J. Milnor [6] has defined a geometric realization |K| of K which is different from that used by Giever and Hu. In this note, we shall show that Milnor's realization |K| has the same homotopy type as Giever-Hu's realization P(K).

2. Let K be a c.s.s. complex. The face and degeneracy maps of K are transformations such that

$$F_i: K_q \to K_{q-1}, \quad q > 0, \quad i = 0, 1, \dots, q, \\ D_i: K_q \to K_{q+1}, \quad q \ge 0, \quad i = 0, 1, \dots, q,$$

where K_q is the set of q-simplexes of K, and satisfy the following commutation rules:

(A)
$$F_{i}F_{j}=F_{j-1}F_{i}, D_{i}D_{j}=D_{j+1}D_{i}, F_{i}D_{j}=D_{j-1}F_{i}, i < j, F_{j}D_{j}=F_{j+1}D_{j}=identity, D_{i}D_{i}=D_{i+1}D_{i}, F_{i}D_{j}=D_{j}F_{i-1}, i > j+1.$$

We denote by $\Delta_q = (0, 1, \dots, q)$ the standard q-simplex. $e_i: \Delta_{q-1} \to \Delta_q$ and $d_i: \Delta_q \to \Delta_{q-1}$ will denote the simplicial mappings defined by

$$e_i(j) = egin{cases} j, & 0 \leq j < i, \ j+1, & i \leq j < q, \end{cases} \quad \quad d_i(j) = egin{cases} j, & 0 \leq j \leq i, \ j-1, & i < j \leq q. \end{cases}$$

Form the topological sum $\widetilde{K} = \bigcup_{q} (K_q \times \mathcal{A}_q)$ with the discrete topology on K_q . Consider the following relations:

(i) $(F_i s, x) \approx (s, e_i x), \quad s \in K_q, \ x \in \varDelta_{q-1},$

(ii)
$$(D_i s, x) \approx (s, d_i x), \quad s \in K_q, \quad x \in \mathcal{A}_{q+1}.$$

Milnor's realization |K| is the identification space formed by reducing \tilde{K} by the relations (i) and (ii). The following lemma is proved easily.

Lemma 1. Giever-Hu's realization P(K) is the identification space formed by reducing \tilde{K} by the relation (i).

By Lemma 1 there exist natural projections $g: \widetilde{K} \to P(K)$ and $f: P(K) \to |K|$.

Lemma 2. For each 0-cell v of |K|, $f^{-1}(v)$ is homeomorphic to a CW-complex Q [7] such that

1) Q is contractible in itself,

2) Q^n is contractible in Q^{n+1} and has only one n-cell for $n=0,1,2,\cdots$, where Q^j is the j-section of Q.

Proof. There exists a unique vertex \tilde{v} of K such that $g(\tilde{v} \times \Delta_0) = v$. Let M(v) be the subcomplex of K consisting of all simplexes which lie on \tilde{v} [1, p. 508]. Since the face and degeneracy maps F and D satisfy the commutation rules (A), M(v) has only one *n*-simplex for $n=0,1,\cdots$. Therefore, M(v) is isomorphic to the singular complex T of one point space and for any two 0-cells v and v' of |K|M(v) and M(v') are isomorphic. Since $f^{-1}(v)$ is Giever-Hu's realization of M(v), $f^{-1}(v)$ is homeomorphic to Q=P(T). By [2, Theorem VI] and [7, Theorem 1] Q is contractible in itself. The property 2) of Q is a consequence of [7, (L) in §5].

Lemma 3. Let x be an interior point of n-cell σ of |K|. Then (n+1)-fold

 $f^{-1}(x)$ is homeomorphic to the product complex $Q \times Q \times \cdots \times Q$.

Proof. There exists a unique non-degenerate *n*-simplex τ of K such that $fg(\tau \times \Delta_n) = \sigma$. Then $fg \mid \tau \times \Delta_n : \tau \times \Delta_n \to \sigma$ is a characteristic map of σ [7, p. 221]. Since x is an interior point of σ , the set $(fg)^{-1}x \frown (\tau \times \varDelta_n)$ consists of only one point. Let (t_0, t_1, \cdots, t_n) be the barycentric coordinates of the point $(fg)^{-1}x \frown (\tau \times \Delta_n)$. Let s be an *m*-cell of P(K) such that $f(s) = \sigma$. Take the *m*-simplex \tilde{s} of K such that $g(\tilde{s} \times \Delta_m) = s$. Then \tilde{s} can be expressed uniquely as $D_{j_k+i_k} D_{j_k+i_k-1}$ $\begin{array}{l} \dots D_{j_k} D_{j_{k-1}+i_{k-1}} \cdots D_{j_r+i_r} D_{j_r+i_r-1} \cdots D_{j_r} \cdots D_{j_1+i_1} D_{j_1+i_1-1} \cdots D_{j_1} \tau, \quad \text{where} \\ m = n + \sum_{r=1}^k (i_r + 1) \quad \text{and} \quad 0 \leq j_1 < j_1 + i_1 < j_1 + i_1 + 1 < j_2 < \cdots < j_r < j_r + i_r \end{array}$ $<\!j_r\!+\!i_r\!+\!1\!<\!j_{r+1}\!<\cdots<\!j_k\!+\!i_k\!\leq\!m.$ By making use of the barycentric coordinates, each point \tilde{y} of $\tilde{s} \times A_m$ such that $fg(\tilde{y}) = x$ can be represented as follows: $[t_0, \cdots, t_{l_1-1}, (\widetilde{q}_{i_1}; t_{l_1}), t_{l_1+1}, \cdots, t_{l_2-1}, (\widetilde{q}_{i_2}; t_{l_2}), \cdots, t_{l_{r-1}},$ $(q_{i_r}; t_{l_k}), t_{l_{k+1}}, \dots, t_n]$, where (t_0, \dots, t_n) is the barycentric coordinates of the point $(fg)^{-1}x \frown (\tau \times \Delta_n)$, $l_1 = j_1$, $l_r = j_r - \sum_{p=1}^{r-1} i_p$, $r = 2, \cdots, k$, and \widetilde{q}_{i_r} is a point of the standard i_r -simplex Δ_{i_r} . Let g_p be the characteristic map of the unique p-cell $\sigma_{\rm p}$ of Q induced by the identification map g for $p=0,1,\cdots$. Then the point $g(\tilde{y})=y$ of s can be represented as $[t_0, \cdots, t_{i_1-1}, (q_{i_1}; t_{i_1}), t_{i_1+1}, \cdots, t_{i_2-1}, (q_{i_2}; t_{i_2}), \cdots, (q_{i_r}; t_{i_r}), \cdots, (q_{i_n}; t_{i_n}), t_{i_n+1}, \cdots, t_{i_n-1}, \dots, t_{i_n-1}, \cdots, t_{i_n-1}$ t_n], where q_{i_r} is the point of σ_{i_r} such that $g_{i_r}(\widetilde{q}_{i_r}) = q_{i_r}$. If $y \neq y'$ and f(y)=f(y')=x for $y, y' \in s$, it is obvious that $t_j=t'_j$ for $j=0,\dots,n$ and $q_{i_r} \neq q'_{i_r}$ for some $1 \leq r \leq k$ in the above representations of y and y'. (n+1)-fold

Put
$$N_s = s f^{-1}(x)$$
. Define a transformation $h_s: N_s \to Q \times Q \times \cdots Q$ by
 $l_1 - fold$ $(l_r - l_{r-1} - 1) - fold$ $(n - l_n) - fold$
 $h_s(y) = (\sigma_0, \cdots, \sigma_0, q_{i_1}, \sigma_0, \cdots, \sigma_0, q_{i_{r-1}}, \sigma_0, \cdots, \sigma_0, q_{i_r}, \sigma_0, \cdots, \sigma_0, q_{i_n}, \sigma_0, \cdots, \sigma_0),$

where q_{i_r} is the point of σ_{i_r} in the above representation of y. If \tilde{s} is non-degenerate, N_s consists of only one point y and we define $h_s(y) = (\sigma_0, \dots, \sigma_0)$. Since Q is a countable CW-complex, the product topology of $Q \times \dots \times Q$ is consistent with its weak topology by an unpublished result due to Dowker (cf. [4, Lemma 8.1, Appendix]). Therefore h_s is a homeomorphism. If s' is a face of s and $f(s') = f(s) = \sigma$, it is not difficult to prove that $h_{s'} = h_s | N_{s'}$. Moreover, for each cell $\sigma_{j_1} \times \dots \times \sigma_{j_{n+1}}$ of $Q \times \dots \times Q$, we can find an $\left(n + \sum_{r=1}^{n+1} j_r\right)$ -cell s such that $f(s) = \sigma$ and $h_s(N_s) = \sigma_{j_1} \times \dots \times \sigma_{j_{n+1}}$. Define the mapping $h: f^{-1}(x) \to Q \times \dots \times Q$ by $h | N_s = h_s$. Since $f^{-1}(x)$ is the weak topology about the collection of closed sets $\{N_s | f(s) = \sigma, s \in P(K)\}, h$ is a homeomorphism between $f^{-1}(x)$ and $Q \times \dots \times Q$ by [7, (A) in §5].

The following lemma is a consequence of Lemmas 2 and 3.

Lemma 4. For each point x of |K|, $f^{-1}(x)$ is a countable and contractible CW-complex.

By Lemma 4 we can make use of a similar argument as the proof of [5, Theorems 1 and 2] to prove the following theorem:

Theorem. Let M be the 0-section of P(K) and N the 1-section of |K|. Then there exists a continuous mapping $\tilde{f}:|K| \rightarrow P(K)$ satisfying the following conditions:

1) $M \subset \widetilde{f}(N)$,

2) $\tilde{f} \mid N$ is a homeomorphism and $f\tilde{f} \mid N = identify$,

3) $\tilde{f}f \simeq 1: (P(K), \tilde{f}(N)) \rightarrow (P(K), \tilde{f}(N))^{*}$ and $f\tilde{f} \simeq 1: (|K|, N) \rightarrow (|K|, N)^{*}$.

Especially, Milnor's realization |K| has the same homotopy type as Giever-Hu's realization P(K).

Proof. Consider the mapping $e_i: \varDelta_{q-1} \to \varDelta_q$ and $d_i: \varDelta_q \to \varDelta_{q-1}$ in the identification relations i) and ii). Let $\widetilde{\varDelta}_q$ be the third barycentric subdivision of \varDelta_q , $q=0,1,\cdots$, such that e_i and d_i induce simplicial mappings $\widetilde{e}_i: \widetilde{\varDelta}_{q-1} \to \widetilde{\varDelta}_q$ and $\widetilde{d}_i: \widetilde{\varDelta}_q \to \widetilde{\varDelta}_{q-1}$. Form the topological sum $[K] = \smile_q(K_q \times \widetilde{\varDelta}_q)$ with the discrete topology on K_q . Let P be the identification space formed by reducing [K] by the relation $(F_is, x) \approx (s, \widetilde{e}_ix), x \in \widetilde{\varDelta}_{q-1}, s \in K_q$. Let R be the identification space formed by reducing [K] by the relations $(F_is, x) \approx (s, \widetilde{e}_ix), x \in \widetilde{\varDelta}_{q-1}, s \in K_q$. Then P and R are subdivisions $[7, \S 9]$ of P(K) and |K|. We shall call P and R the third B-subdivisions of P(K) and |K| respectively.

^{*)} Let (X, A) and (Y, B) be two pairs of topological spaces and let f_0 and f_1 be two continuous mappings of (X, A) to (Y, B) such that $f_0 | A = f_1 | A$. By $f_0 \simeq f_1$: $(X, A) \rightarrow (Y, B)$ we mean that there exists a homotopy $H: X \times I \rightarrow Y$ such that $H(x, 0) = f_0(x)$, $H(x, 1) = f_1(x)$, $x \in X$, and $H(a, t) = f_0(a)$, $t \in I$. By 1 we mean the identity mapping.

Similarly, we can construct the *n*-th *B*-subdivisions of P(K) and |K|for $n=0,1,\cdots$. Note that the third B-subdivision induces the first and the second B-subdivisions. We shall construct the mapping $\tilde{f}: R \rightarrow P$ satisfying the conditions of Theorem. Let σ be a 1-cell of |K|. Since each 0-simplex of K is non-degenerate, we can find a unique 1-cell τ of P(K) such that $f|_{\tau}: \tau \to \sigma$ is a homeomorphism. Define $\tilde{f}: N \to P(K)^{\perp}$ by $\widetilde{f} \mid \sigma = (f \mid \tau)^{-1}$, where $P(K)^i$ is the *i*-section of P(K). Let $\varphi_t : Q \to Q$ be a homotopy, existing by Lemma 2, such that φ_0 =identity, $\varphi_l(Q^n)$ $\subset Q^{n+1}, \varphi_t(\sigma_0) = \sigma_0$ and $\varphi_1(Q) = \sigma_0$. Let v be 0-cell of |K| and ψ_n a homeomorphism of $f^{-1}(v)$ to Q. Define $\varphi_t: f^{-1}(|K|^0) \to f^{-1}(|K|^0)$ by $\Psi_t(y) = \Psi_v^{-1} \varphi_t \Psi_v(y), \ y \in f^{-1}(v), \ v \in |K|^0, \ \text{where} \ |K|^i \text{ is the } i\text{-section of}$ |K|. Let x be an interior point of a 1-cell σ of |K| and let $\dot{\sigma} = v \smile v'$. Then if σ has only one 0-cell, v=v'. By the proof of Lemm 3, each point of $f^{-1}(x)$ is represented by (q, \tilde{t}, q') , where $0 < \tilde{t} < 1$, q and q' are points of $f^{-1}(v)$ and $f^{-1}(v')$ respectively. Let us extend the homotopy Φ_t over $f^{-1}(N)$ by putting $\Phi_t(y) = (\psi_v^{-1} \varphi_t \psi_v(q), \tilde{t}, \psi_{v'}^{-1} \varphi_t \psi_{v'}(q'))$ for $y \in f^{-1}(N - |K|^{\circ})$, where (q, \tilde{t}, q') is the above representation of the point y. Obviously Φ_t is a homotopy between the identity mapping and the mapping $\tilde{f}f|f^{-1}(N)$ such that $\varphi_t|\tilde{f}(N)$ =identity. Moreover, for k-cell Assume that $\tilde{f}:|k|^{i-1} \rightarrow$ au of $f^{-1}(N), \ heta_t(au) \subset f^{-1}(f(au)) \cap P(K)^{k+1}.$ $P(K)^{i-1}$, i > 1, is constructed as follows:

1)_{*i*-1} $\tilde{f} | N^{\smile}(|K|^{i-1} R^0)$ is a homeomorphism and $f\tilde{f} | N^{\smile}(|K|^{i-1} R^0)$ = identity,

2)_{*i*-1} $f\tilde{f} \simeq 1: (|K|^{i-1}, N) \rightarrow (|K|^{i-1}, N)$ and for each (i-1)-cell σ of |K|, $f\tilde{f} |\sigma \simeq 1: \sigma \rightarrow \sigma$,

3)_{*i*-1} $\tilde{f}f | f^{-1}(|K|^{i-1}) \simeq 1: (f^{-1}(|K|^{i-1}), \tilde{f}(N)) \to (f^{-1}(|K|^{i-1}), \tilde{f}(N))$ and for each *j*-cell τ of P in $f^{-1}(|K|^{i-1}), \tilde{f}f | \tau \simeq 1: \tau \to f^{-1}(f(\tau)) \cap P^{j+1}$, where P^{j} and R^{j} are *j*-sections of P and R. Let σ be an *i*-cell of |K|. Put $[\sigma] = \sigma - \text{St} \dot{\sigma}$, where St A is the open star of the set A taken in R. There exists a homeomorphism h_{σ} of $[\sigma]$ into $g(\tau \times \Delta_{i})$, where τ is a unique non-degenerate *i*-simplex of K. Let us extend \tilde{f} over $[\sigma]$ by defining $\tilde{f} | [\sigma] = h_{\sigma}$. Take an *i*-cell μ of R lying on σ such that $\dot{\mu} \cap \dot{\sigma} = \phi$. Therefore, there exists a unique 0-cell v of the second Bsubdivision of |K| such that $f^{-1}(\mu) \subset \text{StSt } f^{-1}(v)$, where St B is the open star of the set B taken in P. Suppose that the mapping \tilde{f} is extended over the (j-1)-section μ^{j-1} of μ , $j \leq i$, such that $\tilde{f}(\mu^{j-1})$ $\subset \text{StSt } f^{-1}(v) \cap f^{-1}(\mu) \cap P^{j-1}$. Let s be a j-cell of μ . Then $\dot{s} \subset \mu^{j-1}$. Since the second B-subdivision of P(K) is a simplicial complex, $f^{-1}(v)$ is a strong deformation retract of StSt $f^{-1}(v)$. Moreover, since $f^{-1}(v)$ is a contractible CW-complex by Lemma 4, we can extend \tilde{f} over s such that

 $\widetilde{f}(s) \subset \operatorname{StSt} f^{-1}(v) \cap f^{-1}(\mu) \cap P^{j}$. Therefore we have an extension of \widetilde{f} over μ^{j} and by the induction we have an extension of \widetilde{f} over $|K|^{i}$ such that $\widetilde{f}(\mu) \subset f^{-1}(\mu) \cap P^i$ for each *i*-cell μ lying on the *i*-cell σ of |K|. Since $f\widetilde{f}(\mu) \subset \mu$ for each *j*-cell μ of *R*, $j \leq i$, it is obvious that the mapping \tilde{f} satisfies 1)_i and 2)_i. We shall prove that \tilde{f} satisfies 3)_i. Let σ be an *i*-cell of |K| with the 0-cell $v_j, j=0, \dots, i$. Each point y of $f^{-1}([\sigma])$ is represented (($q_0; t_0$), \cdots , ($q_i; t_i$)), where $q_i \in f^{-1}(v_i)$ and $\sum_{i=0}^i t_j = 1$, $0 < t_j < 1$. Define $\Phi_t: f^{-1}(x) \to f^{-1}(x)$ by $\Phi_t(y) = ((\psi_{v_0}^{-1}\varphi_t\psi_{v_0}(q_0); t_0), \cdots, (\psi_{v_i}^{-1}\varphi_t\psi_{v_i}(q_i); t_i))$ for $y \in f^{-1}[\sigma]$, where $((q_0; t_0), \dots, (q_i; t_i))$ is the above representation of y. Let μ be an *i*-cell of R lying on *i*-cell σ of |K| such that $\dot{\mu} - \dot{\sigma} \neq \phi$. Let τ be an *m*-cell of *P* such that $f(\tau) = \mu$. There exists a unique 0-cell v of the second B-subdivision of |K| such that $\widetilde{f}f(\tau) \subset \tau$ \subset StSt $f^{-1}(v)$. By the same argument as in the construction of the extension of \widetilde{f} over $|K|^i$ we can extend the homotopy \mathcal{P}_i over $f^{-1}(\sigma)$ such that $\varphi_0 = \text{identity}, \ \varphi_1 = \widetilde{f}f \mid f^{-1}(\mid K \mid^i)$ and for each *i*-simplex τ of P in $f^{-1}(|K|^i) \ \varphi_i(\tau) \subset f^{-1}(f(\tau)) \cap P^{i+1}$. This shows that the mapping \tilde{f} satisfies 3)_i. Thus we have constructed the mapping \tilde{f} of |K| into P(K) such that $\widetilde{f} \mid \mid K \mid^i$ satisfies the conditions 1_i , 2_i and 3_i for each integer i. It is obvious that the mapping \tilde{f} satisfies the conditions 1)-3) of Theorem by $\lceil 7$, (A) and (I) in $\S 5 \rceil$. This completes the proof.

In the proof of the above theorem, we have proved the following corollary:

Corollary 1. Let K be a c.s.s. complex such that each i-simplex for i>1 is degenerate. Then Milnor's realization |K| is embedded in Giever-Hu's realization P(K) as a strong deformation retract.

Finally, by our theorem and [6, Theorem 2], we have the following corollary:

Corollary 2. Let K and K' be countable c.s.s. complexes. Then the four CW-complexes $P(K) \times P(K')$, $P(K \times K')$, $|K| \times |K'|$ and $|K \times K'|$ have the same homotopy type.

References

- S. Eilenberg and J. A. Zilber: Semi-simplicial complexes and singular homology, Ann. Math., 51, 499-513 (1950).
- [2] John B. Giever: On the equivalence of two singular homology theories, ibid., 51, 178-190 (1950).
- [3] Sze-tsen Hu: On the realizability of homotopy groups and their operations, Pacific J. Math., 1, 583-602 (1951).
- [4] I. M. James: Reduced product spaces, Ann. Math., 62, 170-197 (1955).
- [5] Y. Kodama: On a closed mapping between ANR's, Fund. Math. (to appear).
 [6] John Milnor: The geometric realization of a semi-simplicial complexes, Ann.
- [6] John Milnor: The geometric realization of a semi-simplicial complexes, Ann. Math., 65, 357–362 (1957).
- [7] J. H. C. Whitehead: Combinatorial homotopy I, Bull. Amer. Math. Soc., 55, 213-245 (1949).