129. A Relation between Two Realizations of Complete Semi-simplicial Complexes

By Yukihiro Kodama
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1957)

1. Let $S(X)$ be a singular complex of a topological space X. J. B. Giever [2] constructed a polytope $P(X)$ which is a geometric realization of $S(X)$ and whose homotopy groups are isomorphic to those of X. Let K be a complete semi-simplicial (c.s.s.) complex [1]. $\mathrm{S} . \mathrm{T} . \mathrm{Hu}$ [3] constructed a polytope $P(K)$, which is a geometric realization of K. Hu's realization associated with $S(X)$ is homeomorphic to Giever's realization $P(X)$. J. Milnor [6] has defined a geometric realization $|K|$ of K which is different from that used by Giever and Hu. In this note, we shall show that Milnor's realization $|K|$ has the same homotopy type as Giever-Hu's realization $P(K)$.
2. Let K be a c.s.s. complex. The face and degeneracy maps of K are transformations such that

$$
\begin{array}{ll}
F_{i}: K_{q} \rightarrow K_{q-1}, & q>0, i=0,1, \cdots, q, \\
D_{i}: K_{q} \rightarrow K_{q+1}, & q \geqq 0, i=0,1, \cdots, q,
\end{array}
$$

where K_{q} is the set of q-simplexes of K, and satisfy the following commutation rules:

$$
F_{i} F_{j}=F_{j-1} F_{i}, D_{i} D_{j}=D_{j+1} D_{i}, \quad F_{i} D_{j}=D_{j-1} F_{i}, i<j,
$$

$$
\begin{equation*}
F_{j} D_{j}=F_{j+1} D_{j}=\text { identity }, \quad D_{i} D_{i}=D_{i+1} D_{i} \tag{A}
\end{equation*}
$$

$$
F_{i} D_{j}=D_{j} F_{i-1}, \quad i>j+1
$$

We denote by $\Delta_{q}=(0,1, \cdots, q)$ the standard q-simplex. $e_{i}: \Delta_{q-1} \rightarrow \Delta_{q}$ and $d_{i}: \Delta_{q} \rightarrow \Delta_{q-1}$ will denote the simplicial mappings defined by

$$
e_{i}(j)=\left\{\begin{array}{ll}
j, & 0 \leqq j<i, \\
j+1, & i \leqq j<q,
\end{array} \quad d_{i}(j)= \begin{cases}j, & 0 \leqq j \leqq i, \\
j-1, & i<j \leqq q\end{cases}\right.
$$

Form the topological sum $\widetilde{K}=\underset{q}{\smile}\left(K_{q} \times \Delta_{q}\right)$ with the discrete topology on K_{q}. Consider the following relations:
(i)
$\left(F_{i} s, x\right) \approx\left(s, e_{i} x\right), \quad s \in K_{q}, x \in \Delta_{q-1}$,
(ii)

$$
\left(D_{i} s, x\right) \approx\left(s, d_{i} x\right), \quad s \in K_{q}, x \in \Delta_{q+1} .
$$

Milnor's realization $|K|$ is the identification space formed by reducing \widetilde{K} by the relations (i) and (ii). The following lemma is proved easily.

Lemma 1. Giever-Hu's realization $P(K)$ is the identification space formed by reducing \widetilde{K} by the relation (i).

By Lemma 1 there exist natural projections $g: \widetilde{K} \rightarrow P(K)$ and $f: P(K) \rightarrow|K|$.

Lemma 2. For each 0-cell v of $|K|, f^{-1}(v)$ is homeomorphic to a CW-complex Q [7] such that

1) Q is contractible in itself,
2) Q^{n} is contractible in Q^{n+1} and has only one n-cell for $n=0,1,2, \cdots$, where Q^{j} is the j-section of Q.

Proof. There exists a unique vertex \widetilde{v} of K such that $g\left(\widetilde{v} \times \Delta_{0}\right)=v$. Let $M(v)$ be the subcomplex of K consisting of all simplexes which lie on $\widetilde{v}[1, \mathrm{p} .508]$. Since the face and degeneracy maps F and D satisfy the commutation rules (A), $M(v)$ has only one n-simplex for $n=0,1, \ldots$. Therefore, $M(v)$ is isomorphic to the singular complex T of one point space and for any two 0-cells v and v^{\prime} of $|K| M(v)$ and $M\left(v^{\prime}\right)$ are isomorphic. Since $f^{-1}(v)$ is Giever-Hu's realization of $M(v), f^{-1}(v)$ is homeomorphic to $Q=P(T)$. By [2, Theorem VI] and [7, Theorem 1] Q is contractible in itself. The property 2) of Q is a consequence of [7, (L) in §5].

Lemma 3. Let x be an interior point of n-cell σ of $|K|$. Then $f^{-1}(x)$ is homeomorphic to the product complex $\xlongequal[Q \times Q \times \cdots \times Q]{(n+1) \text {-fold }}$.

Proof. There exists a unique non-degenerate n-simplex τ of K such that $f g\left(\tau \times A_{n}\right)=\sigma$. Then $\left.f g\right|_{\tau \times A_{n}: \tau \times A_{n} \rightarrow \sigma \text { is a characteristic }}$ map of $\sigma[7, \mathrm{p}$. 221]. Since x is an interior point of σ, the set $(f g)^{-1} x \frown\left(r \times \Delta_{n}\right)$ consists of only one point. Let $\left(t_{0}, t_{1}, \cdots, t_{n}\right)$ be the barycentric coordinates of the point $(f g)^{-1} x \frown\left(\tau \times \Delta_{n}\right)$. Let s be an m-cell of $P(K)$ such that $f(s)=\sigma$. Take the m-simplex \widetilde{s} of K such that $g\left(\widetilde{s} \times \Delta_{m}\right)=s$. Then \widetilde{s} can be expressed uniquely as $D_{j_{k}+i_{k}} D_{j_{k}+i_{k}-1}$ $\cdots D_{j_{k}} D_{j_{k-1+i_{k-1}}} \cdots D_{j_{r+i}} D_{j_{r}+i_{r}-1} \cdots D_{j_{r}} \cdots D_{j_{1}+i_{1}} D_{j_{1}+i_{1}-1} \cdots D_{j_{1} T}$, where $m=n+\sum_{r=1}^{n}\left(i_{r}+1\right)$ and $0 \leqq j_{1}<j_{1}+i_{1}<j_{1}+i_{1}+1<j_{2}<\cdots<j_{r}<j_{r}+i_{r}$ $<j_{r}+i_{r}+1<j_{r+1}<\cdots<j_{k}+i_{k} \leqq m$. By making use of the barycentric coordinates, each point \widetilde{y} of $\widetilde{s} \times \Delta_{m}$ such that $f g(\tilde{y})=x$ can be represented as follows: $\left[t_{0}, \cdots, t_{l_{1}-1},\left(\widetilde{q}_{i_{1}} ; t_{l_{1}}\right), t_{l_{1}+1}, \cdots, t_{l_{2}-1},\left(\widetilde{q}_{i_{2}} ; t_{l_{2}}\right), \cdots, t_{l_{r}-1}\right.$, $\left.\left(q_{i_{r}} ; t_{l_{k}}\right), t_{l_{k+1}}, \cdots, t_{n}\right]$, where $\left(t_{0}, \cdots, t_{n}\right)$ is the barycentric coordinates of the point $(f g)^{-1} x \frown\left(r \times \Delta_{n}\right), l_{1}=j_{1}, l_{r}=j_{r}-\sum_{p=1}^{r-1} i_{p}, r=2, \cdots, k$, and $\tilde{q}_{i_{r}}$ is a point of the standard i_{r}-simplex $\Delta_{i_{r}}$. Let g_{p} be the characteristic map of the unique p-cell σ_{p} of Q induced by the identification map g for $p=0,1, \cdots$. Then the point $g(\widetilde{y})=y$ of s can be represented as $\left[t_{0}, \cdots, t_{l_{1}-1},\left(q_{i_{1}} ; t_{l_{1}}\right), t_{l_{1}+1}, \cdots, t_{l_{2}-1},\left(q_{i_{2}} ; t_{l_{2}}\right), \cdots,\left(q_{i_{r}} ; t_{l_{r}}\right), \cdots,\left(q_{i_{n}} ; t_{l_{n}}\right), t_{l_{n}+1}, \cdots\right.$, $\left.t_{n}\right]$, where $q_{i_{r}}$ is the point of $\sigma_{i_{r}}$ such that $g_{i_{r}}\left(\widetilde{q}_{i_{r}}\right)=q_{i_{r}}$. If $y \neq y^{\prime}$ and $f(y)=f\left(y^{\prime}\right)=x$ for $y, y^{\prime} \in s$, it is obvious that $t_{j}=t_{j}^{\prime}$ for $j=0, \cdots, n$ and $q_{i_{r}} \neq q_{i_{r}}^{\prime}$ for some $1 \leqq r \leqq k$ in the above representations of y and y^{\prime}. Put $N_{s}=s \frown f^{-1}(x)$. Define a transformation $h_{s}: N_{s} \rightarrow \overbrace{Q \times Q \times \cdots Q}^{(n+1)-f o l d}$ by $h_{s}(y)=\overbrace{\left(\sigma_{0}, \cdots, \sigma_{0}\right.}^{l_{1}-\text { fold }}, q_{i_{1}}, \sigma_{0}, \cdots, \sigma_{0}, q_{i_{r-1}}, \overbrace{\sigma_{0}, \cdots, \sigma_{0}}^{\left(l_{r}-l_{r-1}-1\right)-\text { fold }}, q_{i_{r}}, \sigma_{0}, \cdots, \sigma_{0}, q_{i_{n}}, \overbrace{\sigma_{0}, \cdots, \sigma_{0}}^{\left(n-l_{n}\right)-\text { fold }})$,
where $q_{i_{r}}$ is the point of $\sigma_{i_{r}}$ in the above representation of y. If \widetilde{s} is non-degenerate, N_{s} consists of only one point y and we define $h_{s}(y)=$ $\left(\sigma_{0}, \cdots, \sigma_{0}\right)$. Since Q is a countable $C W$-complex, the product topology of $Q \times \cdots \times Q$ is consistent with its weak topology by an unpublished result due to Dowker (cf. [4, Lemma 8.1, Appendix]). Therefore h_{s} is a homeomorphism. If s^{\prime} is a face of s and $f\left(s^{\prime}\right)=f(s)=\sigma$, it is not difficult to prove that $h_{s^{\prime}}=h_{s} \mid N_{s^{\prime}}$. Moreover, for each cell $\sigma_{j_{1}} \times \cdots$ $\times \sigma_{j_{n+1}}$ of $Q \times \cdots \times Q$, we can find an $\left(n+\sum_{r=1}^{n+1} j_{r}\right)$-cell s such that $f(s)=\sigma$ and $h_{s}\left(N_{s}\right)=\sigma_{j_{1}} \times \cdots \times \sigma_{j_{n+1}}$. Define the mapping $h: f^{-1}(x) \rightarrow$ $Q \times \cdots \times Q$ by $h \mid N_{s}=h_{s}$. Since $f^{-1}(x)$ is the weak topology about the collection of closed sets $\left\{N_{s} \mid f(s)=\sigma, s \in P(K)\right\}, h$ is a homeomorphism between $f^{-1}(x)$ and $Q \times \cdots \times Q$ by [7, (A) in $\S 5$].

The following lemma is a consequence of Lemmas 2 and 3.
Lemma 4. For each point x of $|K|, f^{-1}(x)$ is a countable and contractible CW-complex.

By Lemma 4 we can make use of a similar argument as the proof of [5, Theorems 1 and 2] to prove the following theorem:

Theorem. Let M be the 0 -section of $P(K)$ and N the 1 -section of $|K|$. Then there exists a continuous mapping $\tilde{f}:|K| \rightarrow P(K)$ satisfying the following conditions:

1) $M \subset \tilde{f}(N)$,
2) $\tilde{f} \mid N$ is a homeomorphism and $f \tilde{f} \mid N=$ identify,
3) $\tilde{f} f \simeq 1:(P(K), \tilde{f}(N)) \rightarrow(P(K), \tilde{f}(N))^{*+}$ and $f \tilde{f} \simeq 1:(|K|, N) \rightarrow(|K|$, N).*

Especially, Milnor's realization $|K|$ has the same homotopy type as Giever-Hu's realization $P(K)$.

Proof. Consider the mapping $e_{i}: \Delta_{q-1} \rightarrow \Delta_{q}$ and $d_{i}: \Delta_{q} \rightarrow \Delta_{q-1}$ in the identification relations i) and ii). Let \tilde{J}_{q} be the third barycentric subdivision of $\Delta_{q}, q=0,1, \cdots$, such that e_{i} and d_{i} induce simplicial mappings $\widetilde{e}_{i}: \tilde{\Delta}_{q-1} \rightarrow \widetilde{\Delta}_{q}$ and $\widetilde{d}_{i}: \tilde{\Delta}_{q} \rightarrow \widetilde{\Delta}_{q-1}$. Form the topological sum $[K]=\underbrace{}_{q}\left(K_{q} \times \tilde{\Delta}_{q}\right)$ with the discrete topology on K_{q}. Let P be the identification space formed by reducing [K] by the relation $\left(F_{i} s, x\right) \approx\left(s, \widetilde{e}_{i} x\right), x \in \tilde{J}_{q-1}, s \in K_{q}$. Let R be the identification space formed by reducing [K] by the relations $\left(F_{i} s, x\right) \approx\left(s, \widetilde{e}_{i} x\right), x \in \tilde{\Delta}_{q-1}, s \in K_{q}$, and $\left(D_{i} s, x\right) \approx\left(s, \widetilde{d}_{i} x\right), x \in \tilde{\Delta}_{q+1}, s \in K_{q}$. Then P and R are subdivisions $[7, \S 9]$ of $P(K)$ and $|K|$. We shall call P and R the third B-subdivisions of $P(K)$ and $|K|$ respectively.

[^0]Similarly, we can construct the n-th B-subdivisions of $P(K)$ and $|K|$ for $n=0,1, \ldots$. Note that the third B-subdivision induces the first and the second B-subdivisions. We shall construct the mapping $\tilde{f}: R \rightarrow P$ satisfying the conditions of Theorem. Let σ be a 1-cell of $|K|$. Since each 0 -simplex of K is non-degenerate, we can find a unique 1-cell τ of $P(K)$ such that $f \mid \tau: \tau \rightarrow \sigma$ is a homeomorphism. Define $\tilde{f}: N \rightarrow P(K)^{1}$ by $\tilde{f} \mid \sigma=(f \mid \tau)^{-1}$, where $P(K)^{i}$ is the i-section of $P(K)$. Let $\varphi_{t}: Q \rightarrow Q$ be a homotopy, existing by Lemma 2, such that $\varphi_{0}=$ identity, $\varphi_{l}\left(Q^{n}\right)$ $\subset Q^{n+1}, \varphi_{t}\left(\sigma_{0}\right)=\sigma_{0}$ and $\varphi_{1}(Q)=\sigma_{0}$. Let v be 0 -cell of $|K|$ and ψ_{v} a homeomorphism of $f^{-1}(v)$ to Q. Define $\Phi_{t}: f^{-1}\left(|K|^{0}\right) \rightarrow f^{-1}\left(|K|^{0}\right)$ by $\Phi_{t}(y)=\psi_{v}^{-1} \varphi_{t} \psi_{v}(y), y \in f^{-1}(v), v \in|K|^{0}$, where $|K|^{i}$ is the i-section of $|K|$. Let x be an interior point of a 1-cell σ of $|K|$ and let $\dot{\sigma}=v \smile v^{\prime}$. Then if σ has only one 0 -cell, $v=v^{\prime}$. By the proof of Lemm 3, each point of $f^{-1}(x)$ is represented by $\left(q, \tilde{t}, q^{\prime}\right)$, where $0<\tilde{t}<1, q$ and q^{\prime} are points of $f^{-1}(v)$ and $f^{-1}\left(v^{\prime}\right)$ respectively. Let us extend the homotopy Φ_{t} over $f^{-1}(N)$ by putting $\Phi_{t}(y)=\left(\psi_{v}^{-1} \varphi_{t} \psi_{v}(q), \tilde{t}, \psi_{v^{\prime}}^{-1} \varphi_{t} \psi_{v}\left(q^{\prime}\right)\right)$ for $y \in f^{-1}\left(N-|K|^{0}\right)$, where $\left(q, \tilde{t}, q^{\prime}\right)$ is the above representation of the point y. Obviously Φ_{t} is a homotopy between the identity mapping and the mapping $\tilde{f} f \mid f^{-1}(N)$ such that $\Phi_{t} \mid \widetilde{f}(N)=$ identity. Moreover, for k-cell τ of $f^{-1}(N), \Phi_{t}(\tau) \subset f^{-1}(f(\tau)) \frown P(K)^{k+1}$. Assume that $\widetilde{f}:|k|^{i-1} \rightarrow$ $P(K)^{i-1}, i>1$, is constructed as follows:
$1)_{i-1} \quad \tilde{f} \mid N^{\smile}\left(|K|^{i-1} \frown R^{0}\right)$ is a homeomorphism and $f \widetilde{f} \mid N^{\smile}\left(|K|^{i-1} \frown R^{0}\right)$ =identity,
$2_{i-1} f \tilde{f} \simeq 1:\left(|K|^{i-1}, N\right) \rightarrow\left(|K|^{i-1}, N\right)$ and for each $(i-1)$-cell σ of $|K|$, $f \widetilde{f} \mid \sigma \simeq 1: \sigma \rightarrow \sigma$,
$3)_{i-1} \quad \tilde{f} f \mid f^{-1}\left(|K|^{i-1}\right) \simeq 1:\left(f^{-1}\left(|K|^{i-1}\right), \tilde{f}(N)\right) \rightarrow\left(f^{-1}\left(|K|^{i-1}\right), \tilde{f}(N)\right)$ and for each j-cell τ of P in $f^{-1}\left(|K|^{i-1}\right),\left.\widetilde{f f}\right|_{\tau} \simeq 1: \tau \rightarrow f^{-1}(f(\tau)) \frown P^{j+1}$, where P^{j} and R^{j} are j-sections of P and R. Let σ be an i-cell of $|K|$. Put $[\sigma]=\sigma-\operatorname{St} \dot{\sigma}$, where $\operatorname{St} A$ is the open star of the set A taken in R. There exists a homeomorphism h_{σ} of $[\sigma]$ into $g\left(\tau \times \Delta_{i}\right)$, where τ is a unique non-degenerate i-simplex of K. Let us extend \tilde{f} over $[\sigma]$ by defining $\tilde{f} \mid[\sigma]=h_{\sigma}$. Take an i-cell μ of R lying on σ such that $\dot{\mu} \frown \dot{\sigma}=\phi$. Therefore, there exists a unique 0 -cell v of the second B subdivision of $|K|$ such that $f^{-1}(\mu) \subset \operatorname{StSt} f^{-1}(v)$, where $\operatorname{St} B$ is the open star of the set B taken in P. Suppose that the mapping \tilde{f} is extended over the $(j-1)$-section μ^{j-1} of $\mu, j \leqq i$, such that $\widetilde{f}\left(\mu^{j-1}\right)$ $\subset \operatorname{StSt} f^{-1}(v) \frown f^{-1}(\mu) \subset P^{j-1}$. Let s be a j-cell of μ. Then $\dot{s} \subset \mu^{j-1}$. Since the second B-subdivision of $P(K)$ is a simplicial complex, $f^{-1}(v)$ is a strong deformation retract of StSt $f^{-1}(v)$. Moreover, since $f^{-1}(v)$ is a contractible $C W$-complex by Lemma 4, we can extend \tilde{f} over s such that
$\tilde{f}(s) \subset \operatorname{StSt} f^{-1}(v) \frown f^{-1}(\mu) \frown P^{j}$. Therefore we have an extension of \tilde{f} over μ^{j} and by the induction we have an extension of \tilde{f} over $|K|^{i}$ such that $\widetilde{f}(\mu) \subset f^{-1}(\mu) \subset P^{i}$ for each i-cell μ lying on the i-cell σ of $|K|$. Since $f \widetilde{f}(\mu) \subset \mu$ for each j-cell μ of $R, j \leqq i$, it is obvious that the mapping \tilde{f} satisfies 1$)_{i}$ and 2) ${ }_{i}$. We shall prove that \tilde{f} satisfies 3$)_{i}$. Let σ be an i-cell of $|K|$ with the 0 -cell $v_{j}, j=0, \cdots, i$. Each point y of $f^{-1}([\sigma])$ is represented $\left(\left(q_{0} ; t_{0}\right), \cdots,\left(q_{i} ; t_{i}\right)\right)$, where $q_{i} \in f^{-1}\left(v_{i}\right)$ and $\sum_{j=0}^{i} t_{j}=1,0<t_{j}<1$. Define $\Phi_{t}: f^{-1}(x) \rightarrow f^{-1}(x)$ by $\Phi_{t}(y)=\left(\left(\psi_{v_{0}}^{-1} \varphi_{t} \psi_{v_{0}}\left(q_{0}\right) ; t_{0}\right), \cdots,\left(\psi_{v_{i}}^{-1} \varphi_{t} \psi_{v_{i}}\left(q_{i}\right) ; t_{i}\right)\right.$ for $\left.y \in f^{-1}[\sigma]\right)$, where $\left(\left(q_{0} ; t_{0}\right), \cdots,\left(q_{i} ; t_{i}\right)\right)$ is the above representation of y. Let μ be an i-cell of R lying on i-cell σ of $|K|$ such that $\dot{\mu} \frown \dot{\sigma} \neq \phi$. Let τ be an m-cell of P such that $f(\tau)=\mu$. There exists a unique 0 -cell v of the second B-subdivision of $|K|$ such that $\tilde{f} f(\tau){ }_{\tau}{ }_{\tau}$ $\subset \operatorname{StSt} f^{-1}(v)$. By the same argument as in the construction of the extension of \tilde{f} over $|K|^{i}$ we can extend the homotopy Φ_{t} over $f^{-1}(\sigma)$ such that $\Phi_{0}=$ identity, $\Phi_{1}=\tilde{f} f \mid f^{-1}\left(|K|^{i}\right)$ and for each i-simplex τ of P in $f^{-1}\left(|K|^{i}\right) \Phi_{t}(\tau) \subset f^{-1}(f(r)) \frown P^{i+1}$. This shows that the mapping \tilde{f} satisfies 3$)_{i}$. Thus we have constructed the mapping \tilde{f} of $|K|$ into $P(K)$ such that $\tilde{f} \|\left. K\right|^{i}$ satisfies the conditions 1$\left.)_{i}, 2\right)_{i}$ and 3$)_{i}$ for each integer i. It is obvious that the mapping \tilde{f} satisfies the conditions $1)-3$) of Theorem by [7, (A) and (I) in §5]. This completes the proof.

In the proof of the above theorem, we have proved the following corollary:

Corollary 1. Let K be a c.s.s. complex such that each i-simplex for $i>1$ is degenerate. Then Milnor's realization $|K|$ is embedded in Giever-Hu's realization $P(K)$ as a strong deformation retract.

Finally, by our theorem and [6, Theorem 2], we have the following corollary:

Corollary 2. Let K and K^{\prime} be countable c.s.s. complexes. Then the four $C W$-complexes $P(K) \times P\left(K^{\prime}\right), P\left(K \times K^{\prime}\right),|K| \times\left|K^{\prime}\right|$ and $\mid K$ $\times K^{\prime} \mid$ have the same homotopy type.

References

[1] S. Eilenberg and J. A. Zilber: Semi-simplicial complexes and singular homology, Ann. Math., 51, 499-513 (1950).
[2] John B. Giever: On the equivalence of two singular homology theories, ibid., 51, 178-190 (1950).
[3] Sze-tsen Hu: On the realizability of homotopy groups and their operations, Pacific J. Math., 1, 583-602 (1951).
[4] I. M. James: Reduced product spaces, Ann. Math., 62, 170-197 (1955).
[5] Y. Kodama: On a closed mapping between ANR's, Fund. Math. (to appear).
[6] John Milnor: The geometric realization of a semi-simplicial complexes, Ann. Math., 65, 357-362 (1957).
[7] J. H. C. Whitehead: Combinatorial homotopy I, Bull. Amer. Math. Soc., 55, 213245 (1949).

[^0]: *) Let (X, A) and (Y, B) be two pairs of topological spaces and let f_{0} and f_{1} be two continuous mappings of (X, A) to (Y, B) such that $f_{0}\left|A=f_{1}\right| A$. By $f_{0} \simeq f_{1}$: $(X, A) \rightarrow(Y, B)$ we mean that there exists a homotopy $H: X \times I \rightarrow Y$ such that $H(x, 0)$ $=f_{0}(x), H(x, 1)=f_{1}(x), x \in X$, and $H(a, t)=f_{0}(a), t \in I$. By 1 we mean the identity mapping.

