147. On Non-linear Partial Differential Equations of Parabolic Types. II

By Haruo Murakami
Kobe University

(Comm. by K. Kunugi, m.J.A., Dec. 12, 1957)
As stated in the Introduction of the previous paper, ${ }^{1)}$ we give here some uniqueness conditions, existence theorems (I) and some preparatory theorems for the main existence theorem which will be given in the next part.
3. Uniqueness conditions. Lemma. Let $f(x, y, u, p)$ be defined on $(x, y) \in(\mathcal{C}, \mathcal{S}],-\infty<u, p<+\infty$. If

$$
f(x, y, u, p) \begin{cases}>0 & u>0 \tag{3.1}\\ =0 & u=0 \\ <0 & u<0\end{cases}
$$

then there is one and only one solution of $\left(E_{2}\right)$ which is continuous on $[\mathcal{C}, \mathcal{S}]$ and which vanishes on \mathcal{C}.

Definition. Let $f(x, y, u, p)$ be a function defined on $(x, y) \in(\mathcal{C}, \mathcal{S}]$, $-\infty<u, p<+\infty$. We say that $f(x, y, u, p)$ satisfies the condition ($L k$) if there exists a positive constant k such that

$$
\begin{equation*}
f\left(x, y, u_{1}, p\right)-f\left(x, y, u_{2}, p\right)>-k\left(u_{1}-u_{2}\right) \tag{Lk}
\end{equation*}
$$

for $(x, y) \in(\mathcal{C}, \mathcal{S}]$ and $u_{1}>u_{2}$.
Remark. If we set $v=u e^{-k y}$, by simple calculation, we have

$$
\begin{align*}
& \square v(x, y) \leq k e^{-k y} u(x, y)+e^{-k y} \square u(x, y), \tag{3.2}\\
& \square v(x, y) \geq k e^{-k y} u(x, y)+e^{-k y} \square u(x, y) .
\end{align*}
$$

Then the equation $\left(\mathrm{E}_{2}\right)$ is written by

$$
\begin{equation*}
\square v=F\left(x, y, v, \partial_{x} v\right) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x, y, v, p)=k v+e^{-k y} f\left(x, y, v e^{k y}, p e^{k y}\right) \tag{3.4}
\end{equation*}
$$

If we assume that $f(x, y, u, p)$ satisfies the condition (Lk)

$$
\begin{gathered}
F\left(x, y, v_{1}, p\right)-F\left(x, y, v_{2}, p\right) \\
=k\left(v_{1}-v_{2}\right)-e^{-k y}\left\{f\left(x, y, v_{1} e^{k y}, p e^{k y}\right)-f\left(x, y, v_{2} e^{k y}, p e^{k y}\right)\right\} \\
>k\left(v_{1}-v_{2}\right)-k\left(v_{1}-v_{2}\right)=0
\end{gathered}
$$

for $v_{1}>v_{2}$, so that $F(x, y, v, p)$ is monotone increasing (strictly) with respect to v.
B. Pini proved in his paper ${ }^{2)}$ that $\left(\mathrm{E}_{2}\right)$ has at most one solution which is continuous on $[\mathcal{C}, \mathcal{S}]$ and which admits the prescribed continuous boundary value if $f(x, y, u, p)$ is monotone increasing with

[^0]respect to u. Therefore we have
Theorem 3.1. If $f(x, y, u, p)$ satisfies the condition (Lk) there is at most one solution of $\left(E_{2}\right)$ which is continuous on $[\mathcal{C}, \mathcal{S}]$ and which admits the prescribed continuous boundary value on \mathcal{C}.
4. Existence theorems (I). ThEOREM 4.1. ${ }^{3)}$ Let ($\left.\mathcal{L}, \mathcal{S}\right]$ be a C^{1} -p-domain. If $f(x, y, u, p)$ is bounded and continuous on $(x, y) \in(\mathcal{L}, \mathcal{S}]$, $-\infty<u, p<+\infty$, then $\left(E_{2}\right)$ has at least one solution which is continuous on $[\mathcal{L}, \mathcal{S}]$ and which vanishes on \mathcal{L}.

THEOREM 4.2. Suppose that $f(x, y, u, p)$ is quasi-bounded with respect to u on $(x, y) \in(\mathcal{L}, \mathcal{S}],-\infty<u, p<+\infty$, and moreover $f(x, y$, u, p) satisfies the condition ($L k$) there. Then, $\left(E_{2}\right)$ has at least one solution which is continuous on $[\mathcal{L}, \mathcal{S}]$ and which vanishes on \mathcal{L}.

Proof. As we mentioned in the last section, under the condition (Lk) we can assume without loss of generality that $f(x, y, u, p)$ is monotone increasing with respect to u. Since

$$
f(x, y, u, p)=f(x, y, u, p)-f(x, y, 0, p)+f(x, y, 0, p)
$$

from Corollary 1 of Theorem 2.7, there is a constant $M>0$ such that every solution $u(x, y)$ of (E_{2}) which vanishes on \mathcal{C} and which is continuous on $[\mathcal{C}, \mathcal{S}]$ satisfies $|u(x, y)| \leq M$ if they exist. Set

$$
g(x, y, u, p)=\left\{\begin{array}{cc}
f(x, y, M, p) & u>M \tag{4.1}\\
f(x, y, u, p) & M \geq u \geq-M \\
f(x, y,-M, p) & -M>u
\end{array}\right.
$$

Then solutions of (E_{2}) are solutions of

$$
\begin{equation*}
\square u=g\left(x, y, u, \partial_{x} u\right) \tag{4.2}
\end{equation*}
$$

and vise versa. Since $g(x, y, u, p)$ is bounded, Theorem 4.1 shows that there is at least one solution.
Q.E.D.
5. Harnack's theorems. In the sequel, we assume that $f(x, y, u, p)$ satisfies the condition (Lk). So we can assume without loss of generality that $f(x, y, u, p)$ is monotone increasing with respect to u.

Theorem 5.1. Let $\left\{u_{n}(x, y)\right\}$ be a sequence of solutions of (E_{2}) which are continuous on $[\mathcal{C}, \mathcal{S}]$. If $\left\{u_{n}(x, y)\right\}$ converges uniformly on \mathcal{C}, then it converges also uniformly on $[\mathcal{C}, \mathcal{S}]$.

Proof. Set $u_{n, p}(x, y)=u_{n+p}(x, y)-u_{n}(x, y)$. Then $u_{n, p}(x, y)$ satisfies $\square u=g\left(x, y, u, \partial_{x} u\right)$, where $g(x, y, u, p)=f\left(x, y, u+u_{n}(x, y), \partial_{x} u+\partial_{x} u_{n}(x, y)\right)$ $-f\left(x, y, u_{n}(x, y), \partial_{x} u_{n}(x, y)\right)$, so that

$$
g(x, y, 0,0) \begin{cases}>0 & u>0 \\ =0 & u=0 \\ <0 & u<0 .\end{cases}
$$

Since $\left\{u_{n}(x, y)\right\}$ converges uniformly on \mathcal{C}, for any $\varepsilon>0$ there exists N such that

$$
\left|u_{n, p}(x, y)\right|=\left|u_{n+p}(x, y)-u_{n}(x, y)\right|<\varepsilon
$$

3) This theorem is an immediate consequence of Theorem 6, B, Pini (loc. cit. p. 158), so we omit the proof here.
on \mathcal{C} for $n>N$. By Theorem $2.1^{\text {bls }}$ we see that the inequality also holds on $(\mathcal{C}, \mathcal{S}]$. This shows the uniform convergence of $\left\{u_{n}(x, y)\right\}$ on $[\mathcal{C}, \mathcal{S}]$.
Q.E.D.

Theorem 5.2. Suppose that $f(x, y, u, p)$ is quasi-bounded with respect to u on $(x, y) \in(\mathcal{L}, \mathcal{S}],-\infty<u, p<+\infty$. Let $\left\{u_{n}(x, y)\right\}$ be a sequence of solutions of $\left(E_{2}\right)$ which are continuous on $[\mathcal{L}, \mathcal{S}]$. If $\left\{u_{n}(x, y)\right\}$ converges uniformly on \mathcal{L}, then it converges also uniformly on $[\mathcal{L}, \mathcal{S}]$ and the limit function $u(x, y)$ is a solution of $\left(E_{2}\right)$ on $(\mathcal{L}, \mathcal{S}]$.

Proof. By the previous theorem, $\left\{u_{n}(x, y)\right\}$ converges uniformly to a continuous function $u(x, y)$ on $[\mathcal{L}, \mathcal{S}]$. Let $h_{n}(x, y)$ be the solution of $\square u=0$ which is continuous on $[\mathcal{L}, \mathcal{S}]$ and which admits the boundary value $u_{n}(x, y)$ on \mathcal{L}, and let $h(x, y)$ be the solution of $\square u=0$ which is continuous on $[\mathcal{L}, \mathcal{S}]$ and admits the boundary value $\{u(x, y)\}$ on \mathcal{L}. Then $\left\{h_{n}(x, y)\right\}$ converges to $h(x, y)$ uniformly on $[\mathcal{L}, \mathcal{S}]$. Now, set $v_{n}(x, y)=u_{n}(x, y)-h_{n}(x, y), v(x, y)=u(x, y)-h(x, y)$. Then $\left\{v_{n}(x, y)\right\}$ converges uniformly to $v(x, y)$ on $[\mathcal{L}, \mathcal{S}]$. Since $u_{n}(x, y)$ are equi-bounded on \mathcal{L}, by the same way as in (4.1), we see that $u_{n}(x, y)$ are equi-bounded on $[\mathcal{L}, \mathcal{S}]$. Hence $h_{n}(x, y)$ are also equi-bounded on $[\mathcal{L}, \mathcal{S}]$. Therefore $v_{n}(x, y)$ are equi-bounded on $[\mathcal{L}, \mathcal{S}]$. So that, in the expressions

$$
\begin{gather*}
v_{n}(x, y)=\int_{[\mathcal{L}, \mathcal{S}]} G(x, y ; \xi, \eta) f\left(\xi, \eta, v_{n}(\xi, \eta)+h_{n}(\xi, \eta), \partial_{x} v_{n}(\xi, \eta)\right. \tag{5.1}\\
\left.+\partial_{x} h_{n}(\xi, \eta)\right) d \xi d \eta
\end{gather*}
$$

we can assume that $f\left(\xi, \eta, v_{n}(\xi, \eta)+h_{n}(\xi, \eta), \partial_{x} v_{n}(\xi, \eta)+\partial_{x} h_{n}(\xi, \eta)\right)$ are equi-bounded and we can prove easily from this fact that $\left\{v_{n}(x, y)\right\}$ and $\left\{\partial_{x} v_{n}(x, y)\right\}$ are equi-continuous. Therefore $v(x, y)$ is differentiable with respect to x and $\left\{\partial_{x} v_{n}(x, y)\right\}$ converges uniformly to $\partial_{x} v(x, y)$. From (5.1) it follows

$$
v(x, y)=\int_{[\mathcal{L}, \mathcal{S}]} G(x, y ; \xi, \eta) f\left(\xi, \eta, v(\xi, \eta)+h(\xi, \eta), \partial_{x} v(\xi, \eta)+\partial_{x} h(\xi, \eta)\right) d \xi d \eta .
$$

This expression shows that $v(x, y)$ is a solution of

$$
v=f\left(x, y, v+h(x, y), \partial_{x} v+\partial_{x} h(x, y)\right)
$$

and $v(x, y)$ vanishes on \mathcal{L}. Therefore $u(x, y)$ is a solution of $\left(\mathrm{E}_{2}\right)$.
Theorem 5.3. Suppose that $f(x, y, u, p)$ is bounded, continuous and satisfies the condition ($L k$) on $(x, y) \in(\mathcal{C}, \mathcal{S}],-\infty<u, p<+\infty$. Let $\left\{u_{n}(x, y)\right\}$ be a non-decreasing sequence of solutions of $\left(E_{2}\right)$ on ($\mathcal{C}, \mathcal{S}]$. Moreover suppose that there exists a point (x_{0}, y_{0}) in ($\left.\mathcal{C}, \mathcal{S}\right]$ such that $\left\{u_{n}\left(x_{0}, y_{0}\right)\right\}$ is bounded. Then, $\left\{u_{n}(x, y)\right\}$ converges uniformly in the wider sense in $(\mathcal{C}, \mathcal{S})_{y_{0}}$, and the limit function $u(x, y)$ is a solution of $\left(E_{2}\right)$ in $(\mathcal{C}, \mathcal{S})_{y_{0}}$. Moreover, $\left\{\partial_{x} u_{n}(x, y)\right\}$ converges uniformly to $\partial_{x} u(x, y)$ in $(\mathcal{C}, \mathcal{S})_{y_{0}}$.

Proof. To prove the uniform convergence in the wider sense in
$(\mathcal{C}, \mathcal{S})_{y_{0}}$, we must prove the uniform convergence on any compact set $K \subset(\mathcal{C}, \mathcal{S})_{y_{0}}$, but in this case for such K we can take a $C^{1}-p$-domain $\left[\mathcal{L}, \mathcal{S}^{\prime}\right]$ such that $K \subset\left[\mathcal{L}, \mathcal{S}^{\prime}\right] \subset(\mathcal{C}, \mathcal{S})_{y_{0}}$, so that it suffices to prove the uniform convergence of $\left\{u_{n}(x, y)\right\}$ on $\left[\mathcal{L}, \mathcal{S}^{\prime}\right]$. Similar discussion shows that it is sufficient to prove that the limit function is a continuous solution of $\left(\mathrm{E}_{2}\right)$ in $\left(\mathcal{L}, \mathcal{S}^{\prime}\right]$.

Now take a C^{1}-p-domain $\left(\mathcal{L}^{\prime}, \mathcal{S}^{\prime \prime}\right]$ such that $\mathcal{S}^{\prime \prime} \subset \mathcal{S},\left[\mathcal{L}, \mathcal{S}^{\prime}\right] \subset\left(\mathcal{L}^{\prime}\right.$, $\left.\mathcal{S}^{\prime \prime}\right] \subset(\mathcal{C}, \mathcal{S}]$ and $\left(x_{0}, y_{0}\right) \in\left(\mathcal{L}^{\prime}, \mathcal{S}^{\prime \prime}\right]$. Let $h_{n}(x, y)$ be solutions of $\square h=0$ which are continuous on [$\left.\mathcal{L}^{\prime}, \mathcal{S}^{\prime \prime}\right]$ and which admit their boundary values $u_{n}(x, y)$ on \mathcal{L}^{\prime}, then $h_{n}(x, y)$ increase with n on $\left[\mathcal{L}^{\prime}, \mathcal{S}^{\prime \prime}\right]$ since they are so on \mathcal{L}^{\prime}. Setting $v_{n}(x, y)=u_{n}(x, y)-h_{n}(x, y)$, we see that $v_{n}(x, y)$ are solutions of

$$
\square v=f\left(x, y, v+h_{n}(x, y), \partial_{x} v+\partial_{x} h_{n}(x, y)\right)
$$

and $v_{n}(x, y)$ vanish on \mathcal{L}^{\prime}. Since the right hand of this expression is bounded, by Corollary 1 or 2 of Theorem $2.7 v_{n}(x, y)$ are bounded, so that $h_{n}\left(x_{0}, y_{0}\right)=u_{n}\left(x_{0}, y_{0}\right)-v_{n}\left(x_{0}, y_{0}\right)$ are also bounded. By Harnack's second theorem for the equation of heat conduction, ${ }^{4)}\left\{h_{n}(x, y)\right\}$ converges uniformly to a solution $h(x, y)$ of $\square h=0$ on $\left[\mathcal{L}, \mathcal{S}^{\prime}\right]$. Since $u_{n}(x, y)=$ $v_{n}(x, y)+h_{n}(x, y), u_{n}(x, y)$ are bounded, so that $\left\{u_{n}(x, y)\right\}$ converges to a limit function $u(x, y)$.

We can prove the equi-continuity of $v_{n}(x, y)$ and $\partial_{x} v_{n}(x, y)$ in the same way as in the proof of the previous theorem, so that $\left\{v_{n}(x, y)\right\}$ converges uniformly to $v(x, y)$ and $\left\{\partial_{x} v_{n}(x, y)\right\}$ converges uniformly to $\partial_{x} v(x, y)$ in $\left[\mathcal{L}, \mathcal{S}^{\prime}\right]$. Now, from the expression

$$
\begin{gathered}
v_{n}(x, y)=\iint_{\left[\mathcal{L}, \mathcal{S}^{\prime}\right]} G(x, y ; \xi, \eta) f\left(\xi, \eta, v_{n}(\xi, \eta)+h_{n}(\xi, \eta), \partial_{x} v_{n}(\xi, \eta)\right. \\
\left.+\partial_{x} h_{n}(\xi, \eta)\right) d \xi d \eta
\end{gathered}
$$

it follows by letting $n \rightarrow \infty$ that

$$
\begin{gathered}
v(x, y)=\int_{\left[\mathcal{L}, \mathcal{S}^{\prime}\right]} G(x, y ; \xi, \eta) f\left(\xi, \eta, v(\xi, \eta)+h(\xi, \eta), \partial_{x} v(\xi, \eta)\right. \\
\left.+\partial_{x} h(\xi, \eta)\right) d \xi d \eta .
\end{gathered}
$$

Therefore $u(x, y)=v(x, y)+h(x, y)$ is a solution of $\left(\mathrm{E}_{2}\right)$.
Q.E.D.
6. Quasi-superior and quasi-inferior functions. In the sequal unless we give special attention we assume that $f(x, y, u)$ is defined $\operatorname{over}(\mathcal{C}, \mathcal{S}] \times(-\infty, \infty)$ or $(\mathcal{L}, \mathcal{S}] \times(-\infty, \infty)$ and satisfies the condition (Lk) with respect to u. So that we can assume without loss of generality that $f(x, y, u)$ is increasing (strictly) with respect to u.

Definition. We say that $\omega(x, y)$ is a majorant function of $\left(E_{1}\right)$ on $[\mathcal{C}, \mathcal{S}]$, if
i) $\omega(x, y)$ is continuous on $[\mathcal{C}, \mathcal{S}]$,
ii) if $\omega(x, y) \geq u(x, y)$ on \mathcal{C}, this inequality holds also on ($\mathcal{C}, \mathcal{S}]$, where
4) B. Pini: Sulla soluzione generalizzata di Wiener per il primo problema nel caso parabolico, Rend. Sem. Mat. Padova (1954).
$u(x, y)$ is a solution of $\left(E_{1}\right)$ which is continuous on $[\mathcal{C}, \mathcal{S}]$.
Definition. We say that $\Omega(x, y)$ is quasi-superior with respect to $\left(E_{1}\right)$ at a point $(x, y) \in(\mathcal{C}, \mathcal{S}]$, if
i) $\Omega(x, y)$ is continuous at (x, y),
ii) $\bar{\square} \Omega(x, y) \leq f(x, y, \Omega(x, y))$.

We say that $\Omega(x, y)$ is a quasi-superior function of $\left(E_{1}\right)$ on $[\mathcal{C}, \mathcal{S}]$, if
i) $\Omega(x, y)$ is continuous on $[\mathcal{C}, \mathcal{S}]$,
ii) $\Omega(x, y)$ is quasi-superior with respect to $\left(E_{1}\right)$ at any point of $(\mathcal{C}, \mathcal{S}]$. Minorant functions and quasi-inferior functions are defined analogously.

From the comparison theorems in Section 2, we have
Theorem 6.1. Quasi-superior function is majorant function.
THEOREM 6.2. If $\Omega_{1}, \Omega_{2}, \cdots, \Omega_{n}$ are quasi-superior functions of (E_{1}) on $[\mathcal{C}, \mathcal{S}]$, then $\Omega=\operatorname{Min}\left\{\Omega_{1}, \Omega_{2}, \cdots, \Omega_{n}\right\}$ is a quasi-superior function.

Proof. For any point $(x, y) \in(\mathcal{C}, \mathcal{S}]$ there is at least one index i $(1 \leq i \leq n)$ such that $\Omega(x, y)=\Omega_{i}(x, y)$. $\bar{\square} \Omega(x, y) \leq \bar{\square} \Omega_{i}(x, y) \leq f\left(x, y, \Omega_{i}(x, y)\right)$ $=f(x, y, \Omega(x, y))$ shows that $\Omega(x, y)$ is quasi-superior.
Q.E.D.
7. $\Psi_{\beta}-, \Phi_{\beta}$-functions. Let $\beta(x, y)$ be a bounded function defined on \mathcal{C}.

Definition. We call $\psi(x, y) \Psi_{\beta}-$ function on $[\mathcal{C}, \mathcal{S}]$ if
i) $\psi(x, y)$ is quasi-superior with respect to $\left(E_{1}\right)$ on $[\mathcal{C}, \mathcal{S}]$,
ii) $\psi(x, y) \geq \beta(x, y)$ on \mathcal{C}.

We call $\varphi(x, y) \Phi_{\beta}$-function on $[\mathcal{C}, \mathcal{S}]$ if
i) $\varphi(x, y)$ is quasi-inferior with respect to $\left(E_{1}\right)$ on $[\mathcal{C}, \mathcal{S}]$,
ii) $\varphi(x, y) \leq \beta(x, y)$ on \mathcal{C}.

We write simply $\psi \in \Psi_{\beta}$, and $\varphi \in \Phi_{\beta}$.
Remark 1. It is not always possible to find a Ψ_{β}-function or a Φ_{β}-function. If it is possible to find at least one Ψ_{β} - and one Φ_{β}-function, we say that the condition (P) is satisfied for $\left(E_{1}\right)$ and $\beta(x, y)$.

Remark 2. If $f(x, y, u)$ is bounded on $(\mathcal{C}, \mathcal{S}] \times(-\infty, \infty)$ the condition (P) is automatically satisfied. Indeed, if $|f(x, y, u)| \leq M$, put

$$
\begin{aligned}
& \psi(x, y)=\Gamma+M\left(a^{2}-\left(x^{2}-2 y\right)\right) / 4 \\
& \varphi(x, y)=\gamma-M\left(a^{2}-\left(x^{2}-2 y\right)\right) / 4
\end{aligned}
$$

where γ, Γ, a are the constants such that $\gamma \leq \beta(x, y) \leq \Gamma$ on \mathcal{C}, and $a^{2}-\left(x^{2}-2 y\right)>0$ on $[\mathcal{C}, \mathcal{S}]$. Then we have

$$
\begin{aligned}
& \square \psi(x, y)=-M \leq f(x, y, \psi(x, y)), \\
& \square \varphi(x, y)=M \geq f(x, y, \varphi(x, y)), \quad(x, y) \in(\mathcal{C}, \mathcal{S}]
\end{aligned}
$$

and

$$
\varphi(x, y) \leq \gamma \leq \beta(x, y) \leq \Gamma \leq \psi(x, y) \quad(x, y) \in \mathcal{C}
$$

THEOREM 7.1. If $\psi(x, y)$ is a Ψ_{β}-function and $\varphi(x, y)$ is a Φ_{β} function on $[\mathcal{C}, \mathcal{S}]$, then $\varphi(x, y) \leq \psi(x, y)$.

Proof. $\varphi \leq \psi$ on \mathcal{C} is evident by the definition. By Theorem 2.3 we have $\varphi \leq \psi$ on $(\mathcal{C}, \mathcal{S}]$.
Q.E.D.

Theorem 7.2. If $\psi_{1}, \psi_{2}, \cdots, \psi_{n} \in \Psi_{\beta} ; \varphi_{1}, \varphi_{2}, \cdots, \varphi_{n} \in \Phi_{\beta}$, then

$$
\begin{aligned}
\psi & =\operatorname{Min}\left\{\psi_{1}, \psi_{2}, \cdots, \psi_{n}\right\} \\
\varphi & =\operatorname{Max}\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}\right\}
\end{aligned}
$$

belong to Ψ_{β} and Φ_{β} respectively.
Definition. Let $(\mathcal{C}, \mathcal{S})$ be a p-domain and ($\mathcal{L}, \mathcal{S}^{\prime}$) be its $C^{1}-p$ subdomain such that $\mathcal{S}^{\prime} \subseteq \mathcal{S}$. For any continuous function $u(x, y)$ on $[\mathcal{C}, \mathcal{S}]$ we set

$$
M_{\mathcal{L}} u(x, y)=\left\{\begin{array}{l}
\text { solution of }\left(\mathrm{E}_{1}\right) \text { which } \tag{7.1}\\
\text { is continuous on }\left[\mathcal{L}, \mathcal{S}^{\prime}\right] \\
\text { and admits the boundary } \\
\text { value } u(x, y) \text { on } \mathcal{L} \\
u(x, y)
\end{array} \quad(x, y) \in\left[\mathcal{L}, \mathcal{S}^{\prime}\right],\right.
$$

Remark. It is not always possible to construct $M_{\mathcal{L}} u(x, y)$ since the continuous solution of (E_{1}) on [$\left.\mathcal{L}, \mathcal{S}^{\prime}\right]$ does not necessary exist. But if $w\left(\mathcal{L}, \mathcal{S}^{\prime}\right)$ or $h\left(\mathcal{L}, \mathcal{S}^{\prime}\right)$ is sufficiently small, or $f(x, y, u)$ is quasibounded with respect to u, it is possible to define $M_{\mathcal{L}} u(x, y)$. Indeed, we can first find a continuous solution of $\square u=0$ on $\left[\mathcal{L}, \mathcal{S}^{\prime}\right]$ with the boundary value $u(x, y)$ on \mathcal{L} and next find a solution of $\square v=f(x, y$, $v+h(x, y)$) which is continuous on [$\left.\mathcal{L}, \mathcal{S}^{\prime}\right]$ and which vanishes on \mathcal{L}.

Theorem 7.3. If $w(x, y)$ is quasi-superior with respect to $\left(E_{1}\right)$ on $[\mathcal{C}, \mathcal{S}]$, then $M_{\mathcal{L}} w(x, y)$ is also quasi-superior.

Proof. i) If $(x, y) \in\left[\mathcal{L}, \mathcal{S}^{\prime}\right]$, then $M_{\mathcal{L}} w=w$ and

$$
\begin{equation*}
\bar{\square} M_{\mathcal{L}} w(x, y) \leq f\left(x, y, M_{\mathcal{L}} w(x, y)\right) \tag{7.2}
\end{equation*}
$$

ii) If $(x, y) \in\left(\mathcal{L}, \mathcal{S}^{\prime}\right]$, since $M_{\mathcal{L}} w$ is a solution of $\left(\mathrm{E}_{1}\right)$ in $\left(\mathcal{L}, \mathcal{S}^{\prime}\right]$,

$$
\square M_{\mathcal{L}} w(x, y)=f\left(x, y, M_{\mathcal{L}} w(x, y)\right)
$$

iii) If (x, y) is on the lower bounding segment of the C^{1} - p-domain ($\left.\mathcal{L}, \mathcal{S}^{\prime}\right], M_{\mathcal{L}} w=w$ in this case also, so (7.2) holds true.
iv) If (x, y) is on the side boundary curve of $\left(\mathcal{L}, \mathcal{S}^{\prime}\right]$, since a quasisuperior function is a majorant function, $M_{\mathcal{L}} w(\xi, \eta) \leq w(\xi, \eta)$
where $\xi=x+\sqrt{2} r \sin \theta \sqrt{\overline{\log \operatorname{cosec}^{2} \theta}}, \quad \eta=y-r^{2} \sin ^{2} \theta$, and from the expression

$$
M_{\mathcal{L}} w(\xi, \eta)-M_{\mathcal{L}} w(x, y)=M_{\mathcal{L}} w(\xi, \eta)-w(x, y) \leq w(\xi, \eta)-w(x, y)
$$

we have

$$
\bar{\square} M_{\mathcal{L}} w(x, y) \leq \bar{\square} w(x, y) \leq f(x, y, w(x, y))=f\left(x, y, M_{\mathcal{L}} w(x, y)\right)
$$

Q.E.D.

THEOREM 7.4. If $\psi(x, y)$ is a Ψ_{β}-function on $[\mathcal{C}, \mathcal{S}]$, then $M_{\mathcal{L}} \psi(x, y)$ is also $a \Psi_{\beta}$-function.

Analogous theorems hold true for quasi-inferior functions and Φ_{β}. functions.

[^0]: 1) Proc. Japan Acad., 33, 530-535 (1957).
 2) B. Pini: Sul primo problema di valori al contorno per l'equazione parabolica non lineare del secondo ordine, Rend, del Sem. Mat. Università di Padova, 153 (1957).
