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147. On Non.linear Partial Differential Equations
of Parabolic Types. II

By Haruo MURAKAMI
Kobe University

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1957)

As stated in the Introduction of the previous paper, we give here
some uniqueness conditions, existence theorems (I) and some preparatory
theorems for the main existence theorem which will be given in the
next part.

3. Uniqueness conditions. LEMMA.
on (x, y)e(C, , o <u, p< z oo. If

(3.1) f(x, y, u, p) --0
<0

Let f(x, y, u, p) be defined

u>O
u--O
uO,

then there is one and only one solution of (E) which is continuous
on , and which vanishes on

DEFINITION. Let f(x, y, u, p) be a function defined on (x, y) e (,,
o <u, p< oo. We say that f(x, y, u, p) satisfies the condition (Lk)

if there exists a positive constant k such that
(Lk) f(x, y, ul, p)--f(x, y, u., p)> --k(u--u.)
for (x, y) (C, and

REMARK. If We set v--ue-, by simple calculation, we have

(3.2) []v(x, y)_ke-ku(x, y)We-k[u(x, y),
_Jv(x, y)

_
ke-u(x, y)+e-[u(x, y).

Then the equation (E) is written by
(3.3) [v--F(x, y, v, 3v)
where
(3.4) F(x, y, v, p)--kv+e-Vf(x, y, ve% peV).
If we assume that f(x, y, u, p) satisfies the condition (Lk)

F(x, y, v, p)--F(x, y, v., p)
--k(vl--v.)--e-if(x, y, ve, pe’)-- f(x, y, v.e% pe)}

>k(v-v.)-k(v-v.)-O
for v>v2, so that F(x, y,v, p) is monotone increasing (strictly) with
respect to v.

B. Pini proved in his paper ) that (E) has at most one solution
which is continuous on [C, and which admits the prescribed con-
tinuous boundary value if f(x,y,u,p) is monotone increasing with

1) Proc. Japan Acad., 33, 530-535 (1957).
2) B. Pini: Sul primo problema di valori al contorno per l’equazione parabolica

non lineare del secondo ordine, Rend. del Sere. Mat. Universit di Padova 153 (1957).
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respect to u. Therefore we have
THEOREM 3.1. If f(x, y, u, p) satisfies the condition (Lk) there is

at most one solution of (E) which is continuous on [C, and which
admits the prescribed continuous boundary value on .

4. Existence theorems (I). THEOREM 4.1.) Let (, ] be a C 1-

p-domain. If f(x, y, u, p) is bounded and continuous on (x, y)e (, q];-- < u, p< + , then (Ef) has at least one solution which is continuous
on , ] and which vanishes on .ft.

THEOREM 4.2. Suppose that f(x, y, u, p) is quasi-bounded with
respect to u on (x, y)s (, ], -- <u, p< + , and .moreover f(x, y,
u, p) satisfies the condition (Lk) there. Then, (Ef) has at least one
solution which is continuous on [, ] and which vanishes on .ft.

PROOF. As we mentioned in the last section, under the condition
(Lk) we can assume without loss of generality that f(x, y, u, p) is
monotone increasing with respect to u. Since

f(x, y, u, p):f(x, y, u, p)-f(x, y, O, p)+f(x, y, O, p),
from Corollary 1 of Theorem 2.7, there is a constant M>0 such that
every solution u(x, y) of (E) which vanishes on C and which is con-
tinuous on [C, 2] satisfies lu(x, y)[_M if they exist. Set

f f(x, y, M, p) u>M
(4.1) g(x, y, u, p)-- f(x, y, u, p) M_u_ --M

[f(x,y, --M,p) --M>u.
Then solutions of (E.) are solutions of
(4.2) u--g(x, y, u, u)
and vise versa. Since g(x, y, u, p) is bounded, Theorem 4.1 shows that
there is at least one solution. Q.E.D.. Harnack’s theorems. In the sequel, we assume that f(x,y, u, p)
satisfies the condition (Lk). So we can assume without loss of generality
that f(x, y, u, p) is monotone increasing with respect to u.

THEOREM 5.1. Let {u(x, y)} be a sequence of solutions of (E)
which are continuous on ,. If {Un(X, y)} converges uniformly on, then it converges also uniformly on ,.

PROOF. Set u,(x, y)=u/(x, Y)--Un(X, y). Then Un,(X, y) satisfies
u g(x, y, u, 3xU), where g(x, y, u, p) f(x, y, u+Un(X, y), 3xU+3Un(X, y))
--f(x, y, U(X, y), Un(X, y)), SO that

)[!0 u>0
g(x, y, O, O 0 u=O

0 u<0.
Since {u(x, y)} converges uniformly on C, for any s>0 there exists N
such that

3) This theorem is an immediate consequence of Theorem 6, B. Pini (lot. cir. p.
158), so we omit the proof here.
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on for n>N. By Theorem 2.1’ we see that the inequality also
holds on (C, . This shows the uniform convergence of {u(, y)} on
[C, ]. Q.E.D.

THEOREM 5.2. Suppose that f(x, y, u, p) is quasi-bounded with
espect o u on (x,y)(,], < u, p< - o. Let {u(x, y)} be a
sequence of solutions of (E.) which are continuous on [, ]. If
{u,(x, y)} converges uniformly on _C, then it converges also uniformly
on [_, ] and the limit function u(x, y) is a solution of (E) on (, ].

PROOF. By the previous theorem, {u,(x, y)} converges uniformly
to a continuous function u(x, y) on [A?, ]. Let hE(X, y) be the solu-
tion of []]u-O which is continuous on [A?, 2] and which admits the
boundary value u,(x, y) on L, and let h(x, y) be the solution of u--0
which is continuous on [A:, ] and admits the boundary value {u(x, y)}
on A?. Then {h,(x, y)} converges to h(x, y) uniformly on [A?, ]. Now,
set v(x, y)-u(x, y)--h(x, y), v(x, y)-u(x, y)--h(x, y). Then {v(x, y)}
converges uniformly to v(x, y) on [A?, ]. Since Un(X, Y) are equi-bounded
on A?, by the same way as in (4.1), we see that u(x, y) are equi-bounded
on [, ]. Hence h,(x, y) are also equi-bounded on [Z?, q]. Therefore
Vn(X, y) are equi-bounded on [A?, 2]. So that, in the expressions

-a,h,($, y))d$ de,
we can assume that f($, l, v,($, l)+h,($, V), 3xV($, l)-Paxh($, /)) are
equi-bounded and we can prove easily from this fact that {Vn(X, Y)}
and {av,(x, y)} are equi-continuous. Therefore v(x, y) is differentiable
with respect to x and {3v,(x, y)} converges uniformly to 3v(x, y). From
(5.1) it follows

[C, 2]
This expression shows that v(, y) is a solution of

[]Iv-- f(x, y, v-h(x, y), 8v-ah(x, y))
and v(x, y) vanishes on r.. Therefore u(x, y) is a solution of (E).

Q.E.D.
THEOREM 5.3. Suppose that f(x, y, u, p) is bounded, continuous

and satisfies the condition (Lk) on (x, y)
Let {u,(x,y)} be a non-decreasing sequence of solutions of (E) on
(C, ]. Moreover suppose that there exists a point (Xo, Yo) in (,
such that {u,(Xo, Yo)} is bounded. Then, {u,(x, y)} converges uniformly
in the wider sense in (, 2)o, and the limit function u(x, y) is a
solution of (E.) in (, )o. Moreover, {3u,(x, y)} converges uniformly
to 3u(x, y) in (C, )o"

PROOF. To prove the uniform convergence in the wider sense in
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(, )y0, we must prove the uniform convergence on any compact set
K(C, oq)0, but in this case for such K we can take a C-p-domain
7, ’_] such that K [A’, ’ (F, )0, so that it suffices to prove
the uniform convergence of [Un(X, y)} on [/7, ’. Similar discussion
shows tha it is sufficient to prove that the limit function is a con-
tinuous solution of (E) in (A?, ’.

Now take a C-p-domain (AT’, " such that ", A?, ’_(’,
q"(d, and (x0, Y0)e (AT, "_. Let hE(X, y) be solutions of P-]h-0
which are continuous on [_’, oq"_ and which admit their boundary
values un(x, y) on ’, then hE(X, y) increase with n on [A?’, " since
they are so on ’. Setting Vn(X y)--Un(X y)--hn(x, Y), we see that
v(x, y) are solutions of

[--lv-- f(x, y, v+h(x, y), 3xVZr-3xh,(x, y))
and Vn(X, y) vanish on :A’. Since the right hand of this expression is
bounded, by Corollary 1 or 2 of Theorem 2.7 v(x, y) are bounded, so that
hn(Xo, Yo)--Un(Xo, Yo)--V(Xo, Yo) are also bounded. By Harnack’s second
theorem for the equation of heat conduction, [h(x, y)} converges uni-
formly to a solution h(x, y)of I-]h--0 on [,’. Since Un(X
Vn(X, y)-hn(X, y), Un(X, y) are bounded, so that [Un(X, y)} converges to a
limit function u(x, y).

We can prove the equi-continuity of v(x, y) and 3v(.x, y) in the
same way as in the proof of the previous theorem, so that Ivy(x, y)}
converges uniformly to v(x, y) and {3.v(x, y)} converges uniformly to
3v(x, y) in [oL, ’. Now, from the expression

)n(x’ ")-ff .; ,, ,)f(,, ,, ,),

it follows by letting noo that

[,
+ 3h($, v))de

Therefore u(x, y)-v(x, y)+h(x, y) is a solution of (E.). Q.E.D.
6. Quasi*superior and quasi-inferior functions. In the sequal

unless we give special attention we assume that f(x, y, u) is defined
over (C, (- , ) or (A?, 2 (-- , ) and satisfies the condition
(Lk) with respect to u. So that we can assume without loss of
generality that f(x, y, u) is increasing (strictly) with respect to u.

DEFINITION. We say that o(x, y) is a majorant function of (E)
on [, 3, if
i) o(x, y) is continuous on [,
ii) if o(x, y)>_u(x, y) on , this inequality holds also on (, 3, where

-) B. Pini:--Sulla soluzione generalizzata di Wiener per il primo problema Eel caso
parabolico, Rend. Sem. Mat. Padova (1954).
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u(x, y) is a solution of (E) which is continuous on [C,
DEFINITION. We say that $2(x, y) is quasi-superior with respect

to (E) at a point (x, y)(, 3, if
i) 2(x, y) is continuous at (x, y),
ii) [9(x, y)_f(x, y, 9(x, y)).
We say that 9(x, y) is a quasi-superior function of (E) on [, 3, if
i) 9(x, y) is continuous on [, ,
ii) 9(x, y) is quasi-superior with respect to (E) at any point of (,

Minorant functions and quasi-inferior functions are defined
analogously.

From the comparison theorems in Section 2, we have
THEOREM 6.1. Quasi-superior function is majorant function.
THEOREM 6.2. If 9, t2.,. ., 9 are quasi-superior functions of

(E) on C, , then t?--Min {12, 9.,..., 9} is a quasi-superior func-
ion.

PROOF. For any point (x, y)e(C, 3 there is at least one index i

(l<i<n) such that 2(x,y)-2(x,y). 9(x,y)_9(x,y)_f(x,y,9(x,y))
=f(x, y, t2(x, y)) shows that t?(x, y) is quasi-superior. Q.E.D.

7. -, (P-functions. Let (x, y) be a bounded function defined
on .

DEFINITION. We call (x, y) -function on [, 3 if
i) (x, y) is quasi-superior with respect to (E) on [,
ii) k(x, y)>_(x, y) on C.

We call o(x, y) (P-function on [, 3 if
i) q(x, y) is quasi-inferior with respect to (E) on [,
ii) q(x, y) <_(x, y) on .
We write simply , and

REMARK 1. It is not always possible to find a -function or a
(-function. If it is possible to find at least one - and one P-func-
tion, we say that the condition (P) is satisfied for (E) and (x, y).

RERK 2. If f(x, y, u) is bounded on (C, 3 (-- , ) the con-
dition (P) is automatically satisfied. Indeed, if If(x, y, u)i_M, put

(x, y)-P+M(a--(x--2y))/4,
q(x, y)-- M(a-(x-2y))/4,

where % F, a are the constants such that 7<_(x, y)<_F on F, and
a--(x--2y)>O on [_C, 3. Then we have

(x, y)---M_f(x, y, 4/(x, y)),
[q(x, y)-M_f(x, y, o(x, y)), (x, y) (, 3

and
o(, y) < <Z(x, y) <1"<(x, y) (x, y) e C.

THEOREM 7.1. If (x, y) is a -function and q(x, y) is a

function on [C, , then q(x, y)_(x, y).
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PROOF. (p_ on C is evident by the definition. By Theorem 2.3
we have (p_ on (C, . Q.E.D.

THEOREM 7.2. If .1, 2," ", e ; o, ,. ., o e P, then

=Min {, ,. .,}
(p Max {o, q., .,

belong to and (P respectively.
DEFINITION. Let (, ) be a p-domain and (, ’) be its Cl-p-

subdomain such that ’. For any continuous function u(x, y) on

solution of (E) which
is continuous on [,’ (x, y)and admits the boundary
value u(x, y) on

u(x, y) (x, E-f,

REMARK. It is not always possible to construct Mu(x, y) since
the continuous solution of (E) on EA?, ’ does not necessary exist.
But if w(A?, ’) or h(, ’) is sufficiently small, or f(x, y, u) is quasi-
bounded with respect to u, it is possible to define Mu(x, y). Indeed,
we can first find a continuous solution of u=0 on E,’ with the
boundary value u(x, y) on A? and next find a solution of Jv=f(x, y,

v+h(x, y)) which is continuous on EA?, ’ and which vanishes on

THEOREM 7.3. If W(x, y) is quasi-superior with respect to (El)
on _C, , then Mw(x, y) is also quasi-superior.

PROOF. i) If (x, y)e then Mw=w and

(7.2) [--]Mrw(x, y)_f(x, y, MA.w(x, y)).

ii) If (x, y)e(, 3’, since Mrw is a solution of (E) in (,
Mw(x, y)--f(x, y, Mw(x, y)).

iii) If (x, y) is on the lower bounding segment of the C1-p-domain

(, ’J, Mw=w in this case also, so (7.2) holds true.
iv) If (x, y) is on the side boundary curve of (, q’, since a quasi-
superior function is a majorant function, Mw($,
where S----x+l/2 r sin 0F/log cosec 0, V--y--r sin , and from the
expression

M_w($, )--Mw(x, y)=Mw($, v)--w(x, y) <_ w($, )--w(x, y)
we have

iw(x, y)_w(x, y)_f(x, y, w(x, y))-- f(x, y, iw(x, y)).
Q.E.D.

THEOREM 7.4. If (X, y) is a -function on EC,, then M(x, y)
is also a -function.

Analogous theorems hold true for quasi-inferior functions and P-
functions.


