140. On Eigenfunction Expansions of Self-adjoint Ordinary Differential Operators. I

By Takashi Kasuga

(Comm. by K. Kunugi, m.J.A., Dec. 12, 1957)
In this note, we shall prove some results about eigenfunction expansions of self-adjoint ordinary differential operators for the case when one of their characteristic functions ${ }^{1)}$ is meromorphic on some parts of the real line R.
§1. Let us consider the differential expression

$$
L[u]=-(d / d x)\{p(x) d / d x\} u+q(x) \cdot u \quad(a<x<b,-\infty \leqq a<b \leqq+\infty)
$$

defined on a (finite or infinite) open interval (a, b), where $p(x), q(x)$ are real-valued functions defined in $(a, b), p(x)$ has continuous first derivative, $q(x)$ is continuous, and $p(x)>0$ for $a<x<b$.

Following H. Weyl, ${ }^{2)}$ we classify L according to its behaviour in the neighbourhood of the point a (or b), in the l.c. type (limit circle type) at a (or b) and the l. p. type (limit point type) at a (or b).

In this note, all functions are complex-valued if not specially noted.
\mathfrak{F}_{1} : the set of functions defined on (a, b) and square summable on I, where I is a subinterval (open, closed, or half-open) of (a, b).
\mathfrak{H} : the set $\mathfrak{S}_{(a, b)}$ of functions.
\mathfrak{D} : the set of functions u defined on (a, b) such that u is differentiable on (a, b) and $d u / d x$ is absolutely continuous on every finite closed subinterval of (a, b).
\mathscr{E}_{a} (or $\left.\mathscr{S}_{b}\right)$: the set of functions belonging to \mathfrak{D} such that u, $L[u] \in \mathscr{S}_{(a, c]}\left(\right.$ or $\left.\mathscr{S}_{[c, b)}\right)$ for every point c of (a, b).

Bracket. For $u, v \in \mathfrak{D}$, we introduce the bracket:

$$
\begin{aligned}
{[u v](x) } & =p(x)\left[u(x) v^{\prime}(x)-v(x) u^{\prime}(x)\right] \\
\left(u^{\prime}\right. & \left.=d u / d x, v^{\prime}=d v / d x\right) .
\end{aligned}
$$

In case u and v satisfy one and the same equation $L[u]=l \cdot u$, we write $[u v]$ for $[u v](x)$, since, in this case $[u v](x)$ does not depend on $x .{ }^{3)}$

If L is of the l. c. type at $a($ or $b)$ and $u, w \in \mathscr{S}_{a}\left(\right.$ or $\left.\mathscr{S}_{b}\right)$, the limit $[w u](a)=\lim _{x \rightarrow a}[w u](x)\left(\right.$ or $\left.[w u](b)=\lim _{x \rightarrow b}[w u](x)\right)$ exists. ${ }^{4)}$

Boundary conditions.
\mathscr{S}_{a}^{\prime} (or \mathscr{S}_{b}^{\prime}): the set \mathscr{S}_{a} (or \mathscr{S}_{b}) of functions if $L[u]$ is of the l. p.

[^0]type at a (or b), and if $L[u]$ is of the l.c. type at a (or b), then the set of functions u belonging to \mathscr{S}_{a} (or \mathscr{S}_{t}) satisfying a non-trivial ${ }^{5)}$ condition
$$
\left[w_{a} u\right](a)=0\left(\text { or }\left[w_{b} u\right](b)=0\right)
$$
where w_{a} (or w_{b}) belongs to \mathscr{E}_{a} (or \mathscr{E}_{b}), is real and is fixed once for all in the following.

The differential operator.
If we put

$$
H u=L[u] \text { for } u \in \mathscr{E S}_{a}^{\prime} \cap \mathfrak{S}_{b}^{\prime}
$$

then we obtain a self-adjoint operator H in $\mathfrak{g} .{ }^{\text {b }}$
Fundamental solutions. By a system of fundamental solutions of $L[u]$, we shall mean the system of two solutions $s_{1}(x, l), s_{2}(x, l)$ in \mathfrak{D} of $L[u]=l \cdot u$ such that
i) $\left[s_{2} s_{1}\right]=1$
ii) $s_{k}(x, \bar{l})=s_{k}(x, \bar{l})^{7)} \quad k=1,2$
iii) as functions of $l, s_{k}(x, l)$ and $(d / d x) s_{k}(x, l)(k=1,2)$ are regular analytic in the whole complex l-plane.
$s_{k}(x, l),(d / d x) s_{k}(x, l)(k=1,2)$ are continuous as functions of (x, l) for x belonging to (a, b) and l on the whole complex plane.

For two complex numbers l, f, we define
$\mathfrak{F}(l, f)$: the family of functions defined for $a<x<b$ of the form $C\left[s_{2}(x, l)+f \cdot s_{1}(x, l)\right]$
where C is an arbitrary complex number.
$\mathfrak{F}(l, \infty)$: the family of functions defined for $a<x<b$ of the form $C s_{1}(x, l)$
where C is an arbitrary complex number.
Characteristic functions. For a complex number l such that $\Im l \neq 0,{ }^{8)}$ there is a uniquely determined point $f_{a}(l)$ (or $f_{b}(l)$) of Riemann sphere (the complex plane augmented by the infinity) such that

$$
\mathscr{F}\left\{l, f_{a}(l)\right\} \subset\left(\mathscr{F}_{a}^{\prime} \text { (or } \widetilde{F}\left\{l, f_{b}(l)\right\} \subset\left(\mathfrak{S}_{b}^{\prime}\right) .{ }^{9)}\right.
$$

We call $f_{a}(l), f_{b}(l)$, defined for $\Im l \neq 0$, the characteristic functions of H.
$f_{a}(l)$ and $f_{b}(l)$ are meromorphic on the upper and the lower half complex planes ($\Im l \neq 0)$ and

$$
\begin{equation*}
f_{a}(\bar{l})=\overline{f_{a}(l)} \quad f_{b}(\bar{l})=\overline{f_{b}(l)} \quad f_{a}(l) \neq f_{b}(l) \text { for } \Im l \neq 0 .{ }^{10)} \tag{1}
\end{equation*}
$$

If $L[u]$ is of the l.c. type at a (or $b)$, then $f_{a}(l)$ (or $f_{b}(l)$) is meromorphic and

[^1]$$
\mathfrak{F}\left\{l, f_{a}(l)\right\} \subset \mathbb{G}_{a}^{\prime \prime}\left(\text { or } \mathfrak{F}\left\{l, f_{b}(l)\right\} \subset \mathfrak{G}_{b}^{\prime}\right)
$$
on the whole complex l-plane. ${ }^{11)}$
Change of system of fundamental solutions. When we put
\[

$$
\begin{equation*}
\widetilde{\mathfrak{s}}_{j}(x, l)=\sum_{k=1,2} \beta_{j k}(l) s_{k}(x, l) \quad(j=1,2) \tag{2}
\end{equation*}
$$

\]

for a system of fundamental solutions $s_{k}(x, l)(k=1,2)$ of $L[u]=l \cdot u$, $\tilde{s}_{j}(x, l)(j=1,2)$ constitute another system of fundamental solutions of $L[u]=l \cdot u$, if and only if $\beta_{j k}(l)(j, k=1,2)$ are (transcendental) entire functions of l and

$$
\begin{equation*}
\beta_{j k}(\bar{l})=\overline{\beta_{j k}(l)} \quad(j, k=1,2) \quad \operatorname{det}\left(\beta_{j_{k}}(l)\right)=1 . \tag{3}
\end{equation*}
$$

Also when we denote $f_{a}, f_{b}, \not{\not}(l, f)$ corresponding to the new system of fundamental solutions $\widetilde{s}_{1}, \widetilde{s}_{2}$ by $\widetilde{f}_{a}, \tilde{f}_{b}, \widetilde{\mho}(l, \tilde{f})$, then

$$
\begin{equation*}
\tilde{\mathfrak{F}}(l, \tilde{f})=\tilde{F}(l, f) \tag{4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f=\left\{\beta_{21}(l)+\beta_{11}(l) \tilde{f}\right\} /\left\{\beta_{22}(l)+\beta_{12}(l) \tilde{f}\right\} . \tag{5}
\end{equation*}
$$

On the other hand,

$$
\left.\mathfrak{F}\left\{l, f_{b}(l)\right\}=\widetilde{\mathfrak{F}}\left\{l, \tilde{f}_{b}(l)\right\} \quad \text { (or } \mathfrak{F}\left\{l, f_{a}(l)\right\}=\widetilde{W}\left\{l, \tilde{f_{a}}(l)\right\}\right)
$$

for $\mathfrak{Y l} \neq 0$, by the definition of $f_{b}(l)$ (or $f_{a}(l)$).
Hence we get for $\mathfrak{J l} \neq 0$

$$
\begin{equation*}
f_{b}(l)=\left\{\beta_{21}(l)+\beta_{11}(l) \tilde{f}_{b}(l)\right\} /\left\{\beta_{22}(l)+\beta_{12}(l) \tilde{f}_{b}(l)\right\} \tag{6}
\end{equation*}
$$

and a similar formula for $f_{a}(l)$.
By (6), (5), (4), we can easily prove:
Lemma 1. If $f_{b}(l)$ (or $\left.f_{a}(l)\right)$ is meromorphic in a neighbourhood of a real l_{0}, then also $\widetilde{f}_{b}(l)\left(\operatorname{or} \widetilde{f}_{a}(l)\right)$ is meromorphic in a neighbourhood of l_{0} and

$$
\widetilde{W}\left\{l_{0}, f_{b}\left(l_{0}\right)\right\}=\widetilde{\widetilde{F}}\left\{l_{0}, \tilde{f}_{b}\left(l_{0}\right)\right\} \quad\left(\operatorname{or} \widetilde{\widetilde{F}}\left\{l_{0}, f_{a}\left(l_{0}\right)\right\}=\widetilde{\widetilde{F}}\left\{l_{0}, \tilde{f_{a}}\left(l_{0}\right)\right\}\right) .
$$

Also we remark here that if $f_{b}(l)$ (or $f_{a}(l)$) is regular in a neighbourhood of a real $l_{0}, f_{b}\left(l_{0}\right)$ (or $f_{a}\left(l_{0}\right)$) is real by (1).
§ 2. Theorem 1. If $f_{b}(l)$ (or $f_{a}(l)$) is meromorphic in a neighbourhood of a real l_{0}, then

$$
\mathfrak{W}\left\{l_{0}, f_{b}\left(l_{0}\right)\right\} \subset \mathfrak{S b}_{b}^{\prime \prime} \quad \text { (or } \mathfrak{F}\left\{l_{0}, f_{a}\left(l_{0}\right)\right\} \subset\left(\mathfrak{W}_{a}^{\prime}\right) .
$$

Proof. We shall prove the theorem for the end point b. The proof of the theorem for the end point a goes quite similarly.

If $L[u]$ is of the l.c. type at b, then the theorem is already obvious from the propositions stated at the end of the definition of the characteristic functions in $\S 1$. Hence we assume that $L[u]$ is of the l.p. type at b.

By Lemma 1, the premise and the conclusion of the theorem have invariant meanings under the change of the system of fundamental solutions $s_{1}(x, l), s_{2}(x, l)$. Hence for the proof of the theorem we take a special system of fundamental solutions
11) Cf. Weyl [9].

$$
S\left(c^{\prime}, \theta\right)=\left\{s_{1}(x, l), s_{2}(x, l)\right\}
$$

which satisfy the conditions

$$
\begin{array}{cl}
s_{2}\left(c^{\prime}, l\right)=\sin \theta & s_{1}\left(c^{\prime}, l\right)=\cos \theta \\
p\left(c^{\prime}\right) s_{2}^{\prime}(c, l)=-\cos \theta & p\left(c^{\prime}\right) s_{1}^{\prime}\left(c^{\prime}, l\right)=\sin \theta
\end{array}
$$

for a point c^{\prime} of (a, b) and a real θ.
If we write $S\left(c^{\prime}, \theta-\pi / 2\right)=\left\{\widetilde{s}_{1}(x, l), \widetilde{s}_{2}(x, l)\right\}$, then $\widetilde{s}_{1}(x, l)=s_{2}(x, l)$ $\widetilde{s}_{2}(x, l)=-s_{1}(x, l)$.
In this case, (6) becomes

$$
f_{b}(l)=-\tilde{f}_{b}^{-1}(l)
$$

so that

$$
\tilde{f}_{b}(l)=-f_{b}^{-1}(l) .
$$

Therefore if $f_{b}(l)$ has a pole at l_{0}, then $\tilde{f}_{b}(l)$ is regular in the neighbourhood of l_{0}. Hence we can assume that $f_{b}(l)$ is regular in the neighbourhood of l_{0}, by taking the system $S\left(c^{\prime}, \theta-\pi / 2\right)$ in the place of $S\left(c^{\prime}, \theta\right)$, if necessary.

For the special system $S\left(c^{\prime}, \theta\right)=\left\{s_{1}(x, l), s_{2}(x, l)\right\}$, we have ${ }^{12)}$

$$
\begin{equation*}
\int_{\sigma^{\prime}}^{r}\left|s_{2}(x, l)+f_{b}(l) s_{1}(x, l)\right|^{2} d x<\Im f_{b}(l) \varepsilon^{-1} \tag{7}
\end{equation*}
$$

for $c^{\prime}<r<b$ and $l=l_{0}+i \varepsilon(\varepsilon>0)$.
If $f_{b}(l)$ is regular in the neighbourhood of l_{0}, then

$$
\Im f_{b}\left(l_{0}+i \varepsilon\right)=O(\varepsilon) \quad \text { for } \varepsilon \rightarrow+0
$$

since $f_{b}(l)$ is real on the real line in the neighbourhood of l_{0}. Hence by (7)

$$
\begin{equation*}
\int_{o^{\prime}}^{r}\left|s_{2}\left(x, l_{0}+i \varepsilon\right)+f_{b}\left(l_{0}+i \varepsilon\right) s_{1}\left(x, l_{0}+i \varepsilon\right)\right|^{2} d x<\Im f_{b}\left(l_{0}+i \varepsilon\right) \varepsilon^{-1}<M(>0) \tag{8}
\end{equation*}
$$

where M does not depend on $r\left(c^{\prime}<r<b\right)$ and $\varepsilon\left(0<\varepsilon<\varepsilon_{0}\right)$. On the other hand, $s_{2}\left(x, l_{0}+i \varepsilon\right)+f_{b}\left(l_{0}+i \varepsilon\right) s_{1}\left(x, l_{0}+i \varepsilon\right) \rightarrow s_{2}\left(x, l_{0}\right)+f_{b}\left(l_{0}\right) s_{1}\left(x, l_{0}\right)$ uniformly in the interval $c^{\prime} \leqq x \leqq r$ for $\varepsilon \rightarrow+0$ since $s_{1}(x, l), s_{2}(x, l)$ are continuous as functions of (x, l) on their whole domain of definition and $f_{b}(l)$ is regular in the neighbourhood of l_{0}.

Therefore letting $\varepsilon \rightarrow+0$ in (8), we have

$$
\begin{equation*}
\int_{0^{\prime}}^{r}\left|s_{2}\left(x, l_{0}\right)+f_{b}\left(l_{0}\right) s_{1}\left(x, l_{0}\right)\right|^{2} d x \leqq M . \tag{9}
\end{equation*}
$$

Letting $r \rightarrow b$ in (9), we get

$$
\int_{o^{\prime}}^{b}\left|s_{2}\left(x, l_{0}\right)+f_{o}\left(l_{0}\right) s_{1}\left(x, l_{0}\right)\right|^{2} d x \leqq M<+\infty .
$$

But $s_{2}\left(x, l_{0}\right)+f\left(l_{0}\right) s_{1}\left(x, l_{0}\right)$ is square summable on every finite closed subinterval of (a, b). Hence $s_{2}\left(x, l_{0}\right)+f_{b}\left(l_{0}\right) s_{1}\left(x, l_{0}\right) \in \mathscr{S}_{[c, b)}$ for every point c of (a, b). Also from this and the fact that $s_{2}\left(x, l_{0}\right)+f_{b}\left(l_{0}\right) s_{1}\left(x, l_{0}\right)$ is a solution of $L[u]=l_{0} \cdot u$, it follows that $s_{2}\left(x, l_{0}\right)+f_{b}\left(l_{0}\right) s_{1}\left(x, l_{0}\right) \in \mathfrak{D}$ and
12) Cf. Coddington and Levinson [2, p. 228].
$L\left[s_{2}\left(x, l_{0}\right)+f_{b}\left(l_{0}\right) s_{1}\left(x, l_{0}\right)\right] \in \mathscr{S}_{[a, b j}$ for any $c \in(a, b)$. This concludes the proof of Theorem 1 .

References

[1] Bade, W. G., and Schwartz. J. T.,: On Mautner's eigenfunction expansion, Proc. Nat. Acad. Sci. U. S. A., 42, 519-525 (1956).
[2] Coddington, E. A., and Levinson, N.,: Theory of ordinary differential equations, New York (1955).
[3] Kodaira, K.,: The eigenvalue problem of ordinary differential equations of the second order and Heisenberg's theory of S-matrices, Amer. J. Math., 71, 921-945 (1949).
[4] Mautner, F. I.,: On eigenfunction expansion, Proc. Nat. Acad. Sci. U. S. A., 39, 49-53 (1953).
[5] Stone, M. H.,: Linear transformations in Hilbert space, New York (1932).
[6] Titchmarsh, E. C.,: Eigenfunction expansions associated with second order differential equations, Oxford (1946).
[7] Weyl, H.,: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., 68, 220-269 (1910).
[8] Weyl, H.,: Über gewöhnliche Differentialgleichungen mit Singularitäten und ihre Eigenfunktionen, Gött. Nach., 442-467 (1910).
[9] Weyl, H.,: Über das Pick-Nevanlinnashe Interpolationsproblem und seine infinitesimales Analocon. Ann. Math.. 36. 230-254 (1935).

[^0]: 1) Cf. § 1 .
 2) Cf. Weyl [7], Titchmarsh [6], Coddington and Levinson [2].
 3) Cf. the reference quoted in 2).
 4) Cf. the reference quoted in 2).
[^1]: 5) A condition for $u \in \mathfrak{F}_{a}$ (or \mathbb{F}_{b}) of the form $\left[w_{a} u\right](\alpha)=0$ (or $\left[w_{b} u\right](b)=0$) where $w_{a} \in \mathscr{S}_{a}$ (or $w_{b} \in \mathscr{F}_{b}$), is called trivial if $\left[w_{a} u\right]=0$ (or $\left[w_{b} u\right]=0$) for all $u \in \mathscr{F}_{a}$ (or \mathscr{F}_{b}).
 6) Cf. Stone [5], Weyl [7, 8].
 7) The bar means the conjugate complex number.
 8) In the following, $\mathfrak{F l}$ and $\mathfrak{i l}$ mean the imaginary part and the real part of l respectively.
 9) Cf. the reference quoted in 2).
 10) Cf. Weyl [9].
