48. Measures in the Ranked Spaces. II

By Hatsuo Okano

Osaka University (Comm. by K. KUNUGI, M.J.A., April 12, 1958)

In the preceding paper¹⁾ we showed a method to construct outer measures in ranked spaces. But, in general, every open set is not always measurable. So in this note assuming some conditions we give a method to construct Borel measures in ranked spaces: By a Borel measure in an ω_0 -ranked space R which satisfies F. Hausdorff's axiom (C) we mean a finite or infinite real valued, non-negative, and countably additive set function, defined on the countably additive class of sets, denoted by \mathfrak{B} , generated by the class of all open sets.

1. Definition 1. For two neighbourhoods v(p) and u(q) in an ω_0 -ranked space we call that v(p) is strongly contained in u(q), denoted by $v(p) \subseteq u(q)$, if there exists a neighbourhood v'(p) of p such that $v(p) \subseteq v'(p) \subseteq u(q)$ and the rank of v(p) > the rank of v'(p) > the rank of u(q). A disjoint finite family of neighbourhoods $\{v_n(p)\}$ is called a packing of a neighbourhood u(q) if $v_n(p_n) \subseteq u(q)$ for each n. And let $\{v_n(p_n)\}$ and $\{u_m(q_m)\}$ be two packings of v(p) and u(q) respectively. We call that the packings have the same type if, for each rank n, the number of neighbourhoods of rank n of $\{v_n(p_n)\}$ coincides with that of $\{u_m(q_m)\}$.

Let R be an ω_0 -ranked space which satisfies the following conditions (1.1)-(1.4):²⁾

(1.1) For every neighbourhood v(p) of a point p there exists a rank n such that, for any rank $m, m \ge n$, there exists a neighbourhood u(p) of rank m included in v(p).³⁰

(1.2) There is a rank n_0 such that, for any rank n, the upper limit of numbers of disjoint neighbourhoods of rank n contained strongly in a neighbourhood of rank n_0 is finite.⁴⁾

(1.3) For two neighbourhoods v(p) and u(q) of the same rank and a packing of v(p), u(q) has a packing of the same type.⁵⁾

(1.4) For any fundamental sequence $\{v_n(p_n)\}$ there exists a point p in $\bigcap_n v_n(p_n)$ such that, for any neighbourhood v(p) of p, there exists

3) Cf. [I, (2.2)].

4) Cf. [I, (2.4)].

5) Cf. L. H. Loomis: Haar measure in uniform structure, Duke Math. J., 16, 193-208 (1949).

¹⁾ H. Okano: Measures in the ranked spaces, Proc. Japan Acad., **34**, 136-141 (1958), cited by [I] in this paper.

²⁾ In the sequel we use the terminology neighbourhood only when it has a rank.

an N such that $v_N(p_N) \subseteq v(p)$.⁶⁾

From the condition (1.3), for any pair of ranks n and m, we denote the upper limit of numbers of disjoint neighbourhoods of rank *n* contained strongly in a neighbourhood of rank *m* by [n, m]. Then we have

- (1.5) $0 \leq \lceil n, m \rceil \leq +\infty,$
- $\lceil n, m \rceil \lceil m, l \rceil < \lceil n, l \rceil$ (1.6)
- and

(1.7) there exists a rank m_0 such that $1 \leq [n, n_0] < +\infty$ if $n \geq m_0$.

Therefore we get $0 \le \frac{\lfloor n, m \rfloor}{\lfloor n, n_0 \rfloor} \le \frac{1}{\lfloor m, n_0 \rfloor} \le 1$ if $n, m \ge m_0$ and, hence, there exists an increasing sequence of integers $m_0 < n_1 < \cdots < n_k < \cdots$ such that, for every rank m $(m \ge m_0)$, the sequence $\left\{ \frac{[n_k, m]}{[n_k, n_0]}; k=1, 2, \cdots \right\}$ is convergent. We set $\lambda(m) = \lim_{k \to \infty} \frac{[n_k, m]}{[n_k, n_0]}$ and put $\lambda(v(p)) = \lambda(m)$ for every neighbourhood v(p) of rank $m (m \ge m_0)$.⁷ Then λ is a set function, defined on the class of neighbourhoods $\mathfrak{V} = \bigcup_{m=m_0}^{\infty} \mathfrak{V}_m$, such that (1.8) $0 \leq \lambda(v(p)) \leq 1$,

(1.9) for arbitrary two neighbourhoods v(p) and u(q) of the same rank, $\lambda(v(p)) = \lambda(u(q))$

and

(1.10) if $\{v_n(p_n)\}$ is a packing of u(q) then we have $\lambda(u(q)) \ge \sum_n \lambda(v_n(p_n))$.

Now we put $\lambda_0 = \lambda$. And suppose that we have already defined the functions λ_{β} on \mathfrak{V} for all β such that $0 \leq \beta < \alpha$ where $\alpha < \Omega^{\mathfrak{V}}$ and they satisfy the following conditions (1.11) - (1.15):

 $1 \ge \lambda_0(v(p)) \ge \lambda_1(v(p)) \ge \cdots \ge \lambda_{\beta}(v(p)) \ge \cdots \ge 0.$ (1.11)

(1.12) $\lambda_{\beta}(v(p)) = \lambda_{\beta}(u(q))$ for arbitrary two neighbourhoods v(p) and u(q) of the same rank.

(1.13) $\lambda_{\beta}(v(p)) \ge \sum_{n} \lambda_{\beta}(v_n(p_n))$ for every packing $\{v_n(p_n)\}$ of v(p). (1.14) If β is an isolated ordinal number then $\lambda_{\beta}(v(p)) = \sup_{\{v_n(p_n)\}} \sum_{n} \lambda_{\beta-1}$ $(v_n(p_n))$, where $\{v_n(p_n)\}$ is a packing of v(p).

(1.15) If β is a limiting ordinal number then $\lambda_{\beta}(v(p)) = \lim_{k \to \infty} \lambda_{\tau_k}(v(p))$, where $\{\gamma_k\}$ is an increasing countable sequence of ordinal numbers such that $\lim_{k\to\infty}\gamma_k=\beta$.

Then we define λ_{α} by (1.14) or (1.15) if α is isolated or limiting respectively. Thus we obtain an Ω -sequence $\{\lambda_{\alpha}; 0 \leq \alpha < \Omega\}$ of functions on \mathfrak{V} satisfying (1.11) – (1.15).

206

⁶⁾ This condition, in general, is more restrictive than regular completeness but, if R satisfies the axioms (C) and (D'), then the both conditions coincide. Cf. [I, Lemma 2.2].

This function λ differs, in general, with that defined in [I]. 7)

⁸⁾ \mathcal{Q} denotes the first uncountable ordinal number.

By (1.12) we set $\lambda_{\alpha}(m) = \lambda_{\alpha}(v(p))$, where $v(p) \in \mathfrak{B}_m$. From (1.11), for every rank m, there exists $\alpha(m) < \mathcal{Q}$ such that $\lambda_{\alpha(m)}(m) = \lambda_{\alpha(m)+1}(m) = \cdots = \lambda_{\alpha}(m) = \cdots$ for every α such that $\alpha(m) \le \alpha < \mathcal{Q}$. Since \mathcal{Q} is an inaccessible ordinal number, then $\sup_m \alpha(m) < \mathcal{Q}$. Put $\overline{\alpha} = \sup_m \alpha(m)$ and then we get $\lambda_{\overline{\alpha}}(v(p)) = \lambda_{\overline{\alpha}+1}(v(p)) = \cdots$ for every v(p). We denote the constant by $\lambda_{\Omega}(v(p))$. Then we have the following

Theorem 1. $\lambda_{\Omega}(v(p))$ is a finite real valued set function, defined on \mathfrak{V} , such that

(1.16) $0 < \lambda_{\Omega}(v(p)) \leq 1$ except the case that it is identically zero,

(1.17) $\lambda_{\Omega}(v(p)) = \lambda_{\Omega}(u(q))$ for any pair of neighbourhoods v(p) and u(q) of the same rank

and

(1.18) $\lambda_{\Omega}(v(p)) = \sup_{\{v_n(p_n)\}} \sum_n \lambda_{\Omega}(v_n(p_n)), \text{ where } \{v_n(p_n)\} \text{ is a packing of } v(p).$ 2. Let \mathbb{O} be the class of all open sets of R. We set $\lambda_*(0) = 0$

2. Let \mathbb{O} be the class of all open sets of R. We set $\lambda_*(0)=0$ for the empty set 0 and, for every non-empty open set G, $\lambda_*(G) = \sup_{\{v_n(p_n)\}} \sum_n \lambda_n(v_n(p_n))$, where $\{v_n(p_n)\}$ is a disjoint finite family of neighbourhoods each of which is contained in G.

Theorem 2. λ_* is a finite or infinite real valued, non-negative, monotone, countably subadditive and countably additive set function, defined on \mathfrak{O} such that $\lambda_*(0)=0$ and, for every non-empty open set $G, \lambda_*(G)>0$ except the case that λ_{Ω} is identically zero.

The subadditivity of the set function λ_* is proved by an analogous way with the proof of Theorem 2 of the preceding paper from the conditions (1.4) and (1.18).

3. For every subset A of R we set $\nu^*(A) = \inf_{G} \lambda_*(G)$, where G is an open set which contains A. Then ν^* is an outer measure in R, i.e. a finite or infinite real valued, non-negative, monotone and countably subadditive set function defined on the class of all subsets of R such that $\nu^*(0)=0$, and satisfies the conditions

(3.1) $\nu^*(G) = \lambda_*(G)$ for any open set G and

(3.2) $\nu^*(A \smile B) = \nu^*(A) + \nu^*(B)$ if there exist two open sets G and H such that $A \subseteq G$, $B \subseteq H$ and $G \frown H = 0$.

Let \mathfrak{L}^* denote the class of all ν^* -measurable sets.

Lemma. If, for every neighbourhood v(p), there exists a closed set F such that $F \supseteq v(p)$ and $\nu^*(F-v(p))=0$ then every open set is ν^* -measurable and therefore we have $\mathfrak{L}^* \supseteq \mathfrak{B}$.

From this lemma we obtain the following

Theorem 3. We set $\nu(A) = \nu^*(A)$ for every subset A belonging to \mathfrak{L}^* . Then, if the hypothesis of the above lemma is satisfied, ν is a Borel measure in \mathbb{R}^{0} . And we have $\nu(G) > 0$ for every non-empty open set G except the case that λ_{Ω} is identically zero.

No. 4]

⁹⁾ We do not assume the axiom (C).