No. 4]

44. Decomposition-equivalence and the Existence of Nonmeasurable Sets in a Locally Compact Group

By Yoshimichi MIBU

(Comm. by Z. Suetuna, M.J.A., April 12, 1958)

Let G be a locally compact and σ -compact group and m^* a left invariant outer measure in G. In the theory of Haar's measure, it is well known that any two measurable sets $A \subseteq G$ and $B \subseteq G$ of the same measure are decomposition-equivalent to each other, that is, there exist direct decompositions

(1)
$$A = M + A_1 + A_2 + \dots + A_n + \dots, \\ B = N + B_1 + B_2 + \dots + B_n + \dots$$

of A and B, with relations

(2)
$$m^*(M)=m^*(N)=0$$
, $g_iA_i=B_i$, $g_i\in G$, $i=1,2,\cdots$, and

(3) every A_i is m^* -measurable.

Conversely, any two measurable sets which are decomposition-equivalent to each other have clearly the same measure. Hence if $m(A) \neq m(B)$ (for measurable set A we write m(A) instead of $m^*(A)$), then the set A is not decomposition-equivalent to B. But if we admit, in the expression (1), non-measurable sets A_i 's, then it is proved that for any two measurable sets A and B of positive measures, even though m(A) is not equal to m(B), there exist direct decompositions (1) satisfying the condition (2). This is included in the Corollary of Theorem 1 as a special case.

Definition. Let A and B be two subsets of G. If there exist direct decompositions (1) satisfying the condition (2), then A is called to be almost decomposition-equivalent to B. And if further in the expression (1) both M and N can be taken to be empty, A is called to be completely decomposition-equivalent to B.

Remark 1. In the above definition it is not assumed that each A_i is measurable. Our definition of decomposition-equivalence is different from the usual one.

Notation. In the following we denote by $A \sim B$ and $A \approx B$ the almost and completely decomposition-equivalence of A to B respectively.

Remark 2. Suppose that $A \approx B$. Then $m^*(A) = 0$ implies $m^*(B) = 0$. And if A is of the first category, then B is also of the same category. The following lemma is easily proved.

Lemma 1. 1) $A \sim A (A \approx A)$, 2) $A \sim B (A \approx B)$ implies $B \sim A (B \approx A)$,

3) $A \sim B$ $(A \approx B)$ and $B \sim D$ $(B \approx D)$ imply $A \sim D$ $(A \approx D)$.

Lemma 2. Suppose that $A \approx B$ $(A \sim B)$ and $B \subseteq A$. If $B \subseteq D \subseteq A$,

then $A \approx D \ (A \sim D)$.

Proof. By the assumption of our theorem, there exist direct decompositions $A = A_1 + A_2 + \cdots + A_n + \cdots$ and $B = B_1 + B_2 + \cdots + B_n + \cdots$ such that $g_i A_i = B_i$, $i = 1, 2, \cdots$. For any $x \in A$, there exists an A_i such that $x \in A_i$. We define $f(x) = g_i x$ if $x \in A_i$. Under such definition of f(x), it becomes a one-to-one mapping of A onto B and $f(A_i) = B_i$, $i = 1, 2, \cdots$ hold. Moreover it is easily seen that

(4) $E \approx f(E)$ for any subset E of A.

We set A-D=K and D-B=L. It clearly holds that A=B+K+L. In the rest of the present proof, we shall write $E_1=f(E)$, $E_2=f(E_1)$, $\cdots E_{i+1}=f(E_i)\cdots$ for any subset $E\subseteq A$. In such notation we have

$$B = f(A) = f(B) + f(K) + f(L) = B_1 + K_1 + L_1$$

$$B_1 = f(B) = f(B_1) + f(K_1) + f(L_1) = B_2 + K_2 + L_2$$

$$\vdots$$

$$\vdots$$

$$B_i = f(B_{i-1}) = f(B_i) + f(K_i) + f(L_i) = B_{i+1} + K_{i+1} + L_{i+1}$$

$$\vdots$$

$$\vdots$$

Let $B^* = \bigcap_{i=1}^{n} B_i$. We have $A = B^* + K + L + K_1 + L_1 + \cdots$ and $D = B^* + L + K_1 + L_1 + \cdots$. On the other hand from the above relation (4) we have $K \approx K_1 \approx K_2 \approx \cdots$, $L \approx L_1 \approx L_2 \approx \cdots$. Then it is easily seen that $A \approx D$.

When $A \sim B$ and $B \subseteq D \subseteq A$ we can easily prove that $A \sim D$ by a slight modification of the above proof.

Lemma 3. Let H be an abstract subgroup of G such that $\overline{H} \leq \aleph_0$. If $G = H\alpha + H\beta + H\gamma + \cdots$ and $G = H\alpha' + H\beta' + H\gamma' + \cdots$ are two expressions of the decomposition of G into the right cosets of H, then the set $M = \{\alpha, \beta, \gamma, \cdots\}$ is completely decomposition-equivalent to the set $M' = \{\alpha', \beta', \gamma', \cdots\}$, that is, $M \approx M'$.

Proof. Without losing the generality we may assume that $H\alpha = H\alpha'$, $H\beta = H\beta'$, $H\gamma = H\gamma'$, \cdots . This assumption means that there exist elements ξ, η, ζ, \cdots of H such that $\alpha' = \xi \alpha$, $\beta' = \eta \beta$, $\gamma' = \zeta \gamma, \cdots$. By putting for each element $h \in H$

 $M_h' = \{\alpha'; \alpha' = h\alpha, \alpha \in M\} \cap M', \quad M_h = \{\alpha; \alpha' = h\alpha, \alpha' \in M'\} \cap M,$ we have clearly $M_h' = hM_h$. On the other hand $M = \sum_{h \in H} M_h$ and $M' = \sum_{h \in H} M_h'$ hold. Hence we have clearly $M \approx M'$.

Theorem 1. Let G be a locally compact and σ -compact group and A a subset of G. If G is not discrete, then it follows that

- 1) if A contains a measurable subset E of positive measure, then $A \sim G$.
 - 2) if A^i (the set of inner points of A) is not empty, then $A \approx G$. Proof. In the first place we shall prove 1). Since m(E) > 0,

there exists a sequence $a_1, a_2, \dots, a_n, \dots$ of elements of G such that $m^*(G - \bigcup_{i=1}^{\infty} a_i E) = 0$.

This is the well-known fact in the theory of Haar's measure. By putting $B = G - \bigcup_{i=1}^{\infty} a_i E$ and $D = E \subseteq B$, we see at once

(5)
$$G = \bigcup_{i=0}^{\infty} a_i D$$
 where $a_0 = e$.

Let H be the abstract subgroup of G which is generated by $\{a_0, a_1, \dots, a_n, \dots\}$. Then we have clearly

(6)
$$\overline{H} \leq \aleph_0$$
 and $HD = G$.

G is partitioned into the right cosets of H such that

$$(7) G = H\alpha + H\beta + H\gamma + \cdots .$$

From (6) we can assume that $\alpha, \beta, \gamma, \cdots$ are all contained in D. We set $L = \{\alpha, \beta, \gamma, \cdots\} \subseteq D$. Since G is locally compact but not discrete, we have easily $\overline{G} > \bigvee_0$. Hence there exists an element $g_1 \in G$ such that $g_1 \in H$. Let H_1 be the abstract subgroup of G which is generated by H and g_1 . Then clearly $\overline{H}_1 \leq \bigvee_0$, and hence there exists an element g_2 such that $g_2 \in H_1$. Let H_2 be the abstract group generated by H_1 and g_2 . Then we have also $\overline{H}_2 \leq \bigvee_0$. Continuing this process we have finally

$$(8) H \subset H_1 \subset H_2 \subset \cdots \subset H_n \subset \cdots.$$

Let H^* be the abstract subgroup of G which is generated by H, H_1, H_2, \cdots . Then it is easily seen that $\overline{\overline{H}}^* = \mathbb{N}_0$. H^* is decomposed into the right cosets of H such that

$$(9) H^* = H\lambda + H\mu + H\nu + \cdots .$$

Denoting $\{\lambda, \mu, \nu, \cdots\}$ by M, we have clearly $\overline{M} = \aleph_0$. On the other hand G is decomposed into the right cosets of H^* such that

(10)
$$G=H^*\xi+H^*\eta+H^*\zeta+\cdots.$$

We set $N=\{\xi,\eta,\zeta,\cdots\}$. From (9) and (10) we have

(11)
$$G = H\lambda\xi + H\mu\xi + H\nu\xi + \cdots + H\lambda\eta + H\mu\eta + H\nu\eta + \cdots + H\lambda\zeta + H\mu\zeta + H\nu\zeta + \cdots$$

.

Setting

we have $K=\lambda\{\xi,\eta,\zeta,\cdots\}+\mu\{\xi,\eta,\zeta,\cdots\}+\nu\{\xi,\eta,\zeta,\cdots\}+\cdots=\lambda N+\mu N$

$$+\nu N + \cdots = \sum_{\sigma \in M} \sigma N$$
, that is,

$$(12) K = \sum_{\sigma \in \mathcal{M}} \sigma N.$$

Using Lemma 3 we have $L \approx K$. We shall show that $K \approx G$. From (11) we have $G = \sum_{h \in H} hK = \sum_{h \in H} h(\sum_{\sigma \in M} \sigma N) = \sum_{h \in H, \sigma \in M} h\sigma N$, i.e., (13) $G = \sum_{h \in H, \sigma \in M} h\sigma N.$

(13)
$$G = \sum_{h \in H} h \sigma N.$$

Since $\overline{\overline{M}} = \Re_0 = \overline{H \cdot M}$, we see at once $K \approx G$. Hence by Lemma 1 we have $L \approx G$. From Lemma 2 we have $D \approx G$. Since D is the sum of the set E and the set B of measure 0, it is easily seen that $E \sim G$ (see Remark 2). Using again Lemma 2 we have $A \sim G$. This completes the proof of 1).

For the proof of 2) we select a measurable open set E such that $E \subseteq A^i$. Then in the proof of assertion 1) the set B can be taken to be empty, and hence D=E. Consequently we have $E\approx G$. From Lemma 2 we have $A \approx G$.

Corollary. Let A and B be two subsets of G.

- 1) If each of A and B contains its measurable subset of positive measure, then $A \sim B$ and
 - 2) if $A^i \neq 0$, $B^i \neq 0$, then $A \approx B$.

Theorem 2. Let G be a locally compact and σ -compact group. If G is not discrete, then there exists a non-measurable set in G. More generally, any measurable set of positive measure contains a nonmeasurable set.

Proof. Let A be a measurable set of positive measure. It is easily seen that there exists a measurable subset $B \subseteq A$ such that $0 < m(B) \neq m(G)$. Then from the above theorem we have $B \sim G$. Consequently m(B) = m(G) if every subset of B is measurable. So we have arrived at a contradiction.

Remark 3. The first half of the above theorem holds for any non- σ -compact group G. This is evident from the fact that G contains an open and σ -compact subgroup.

Remark 4. Let G be a separable and locally compact group. Then there exists a set which is almost decomposition-equivalent to G but not completely decomposition-equivalent to G.

Proof. It is easily seen that G contains a measurable non-dense set A of positive measure. From Theorem 1 we have $A \sim G$. Since G is of the second category, A is not completely decomposition-equivalent to G (see Remark 2).