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56. On Homomorphic Mappings

By Yoshimichi MBU
(Comm. by Z. SUETUNA, M.J.A., May 13, 1958)

In the theory of real valued functions we have
"Theorem A. Let R be the space of real numbers and f(x) an

additive function defined on R. If f(x) is measurable (with respect
to the Lebesgue measure), then f(x) is continuous".

This is a well-known theorem. It will be natural to propose the
following question, in connection with the above theorem:

"Let G and G* be two topological groups and cp(x) a homomorphic
mapping of an abstract group G into an abstract group G*. Under
what conditions does it follow that cp(x) is a continuous mapping of the
topological group G into the topological group G*"?

It is the purpose of the present paper to answer this question.
First we shall extend Theorem A to a more general case (see Theorem 1).
This generalization is the first answer for the above question. Next
we shall prove a theorem (Theorem 2) which is the second answer for
the above question. And we have, using our Theorems 1 and 2 and
the duality theorem of Pontrjagin, an interesting consequence (see
Theorem 3).

Definition 1. Let G be an abstract space and m* an outer measure
in G. Let f be a mapping of G into a topological space Q. f is
called an m*-measurable mapping if the set f-(U)is m*-measurable
for every open set Utg.

Definition 2. Let G be a topological space. Let f be a mapping
of G into a topological space tg. f is called a mapping which has the
property of Baire if the set f-(U) has the property of Baire for every
open set U/2.

Definition 3. Let G be a topological group. G is called to be
a-bounded, if for every open set U G there exists a sequence a,

a2,...,a,.., of elements of G such that G-[.JaU.
i--1

Theorem 1. Let G be a locally compact group and m* a left-
invariant Haar’s outer measure in G. If f is an m*-measurable homo-
morphic mapping of G into a a-bounded topological group G*, then
f is continuous.

Proof. Let H*=f(G). If we introduce the relative topology in
H*, then H* becomes a a-bounded topological group. For the proof
of our theorem it is sufficient to show that f is a continuous mapping
of G into H*. Let U* be an arbitrary neighborhood of the identity



242 Y. MIBU [Vol. 34,

e* of H*. There exists a neighborhood V* of e* such that V*-V* U*.
Let V--f-(V*). From Definition 1 we see that V is m*-measurable.
We shall show that re(V)>0. There exists a sequence a*, a*,..., a*,.
of elements of H* such that H*-- a* V*. We set V=f-(a* V*),

i=l

i--l, 2,.... Then it is easily seen that each V is written in the form
aV, where a is an arbitrary element of f-’(a*). Hence we have

G- 12 a, V. From this we can easily see that re(V)> 0. There exists
i=1

a neighborhood W of the identity e of G such that WV-V (this is
the well-known fact in the theory of Haar’s measure). Thus we have
f(W)_f(V-*V) V*-V* U*. This shows that f is continuous at e.
On the other hand f is a homomorphic mapping of an abstract group
G onto an abstract group H*. Hence f is continuous at all points.

Corollary. Let R be the space of real numbers. And let f(x)
be a real-valued function defined on R such that f(x+y)- f(x)+f(y).
If f(x) is a Lebesgue-measurable function, then f(x) can be written
in the form f(x)-x.

Lemma 1. Let G be a topological group whose open sets are all
of the second category. And let MG be a subset which has the
property of Baire. If M is of the second category, then M-M con-
tains a neighborhood V of the identity e of G.

Proof. Since M has the property of Baire, there exists an open
set U such that the symmetric difference M U is of the first cate-
gory. On the other hand M is of the second category, and hence
we can easily see that U#0. We take an arbitrary element a of U.
There exists a neighborhood V of the identity e such that
1 VV-a-U.
We set K=MU. Then we have
( 2 VVV-a-Ua-Ma-K.
Let b be an arbitrary element of V. From (1) we have
(3) Vb-a-Ua-Ma-K, that is, Va-Mba-Kb.
Since V is of the second category and both a-K and a-Kb are of
the first category, it is evident that (using (2) and (3))
( 4 ) (a-M,.--,a-Mb)..-., V-O, that is, M,.-.,MbO.
This implies that for an arbitrary element b V there exist elements
cM and d eM such that c-db, that is, d-c-b. Hence we have
M-M_V.

By using Lemma 1, we can also prove Theorem 2 below.
Theorem 2. Let G be a topological group whose open sets are

all of the second category. And let f be a homomorphic mapping
of G into a a-bounded topological group G*. If f has the property
of Baire, then f is continuous.
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Theorem 3. Let G be a separable and locally compact abelian
group. Suppose that G is not discrete. Then there exists at least
one set E G which is not measurable with respect to the Haar
measure in G. And further there exists at least one set EG which
does not have the property of Baire.

Proof. We introduce the discrete topology in G and denote this
topological group by G*. Let X and X* be the character groups of
G and G* respectively. Then X is a separable and locally compact
abelian group and X* is a compact abelian group. Clearly an element
:eX can be regarded as an element :g*eX*. To every %eX we
correspond such an element X* e X*. Then we have a mapping (X)
=X* of X into X*. It is easily seen that (X) is a continuous homo-
morphic mapping of the topological group X into the topological group
X*. We shll show that (X) X*. Suppose that (X)--X*. Then- is also continuous. (This is a well-known fact in the theory of
topological groups.) Hence X is homeomorphic with X* and con-
sequently a compact group. This implies that G is discrete. (Remember
the duality theorem of Pontrjagin.) Thus we have arrived at a con-
tradiction. Hence there exists a )* e X* which does not belong to
@(X). Clearly X* is a homomorphic mapping of an abstract group G
into an abstract group K (K is the factor group R/N, where R is the
additive topological group of real numbers and N is the subgroup of
all integers). But this is not a continuous mapping of G into K. Hence
by Theorem 1 :* is not measurable mapping (with respect to the
Haar measure in G) of G into K, and by Theorem 2 ;g* is not a
mapping which has the property of Baire. Consequently :g*-(U) is
non-measurable for a certain open set UK and X*-(V) is a set
which does not have the property of Baire for a certain open set
V K. Setting E-X*-(U) and E.--X*- (V), we obtain our theorem.

Lemma 2. Let R be the space of real numbers. Then there
exists a set B with the properties:

1) For every x eR there exists a finite subset {x, x,..., x} of
B and a corresponding finite set {r, r,..., rn} Of rational numbers such

that x- rx.
2) B is linearly independent with respect to rational coefficients,

that is, rx+rx.+... +rx-O implies r-r-...-r-O for every
finite subset {x, x,..., x} of B and a finite set {r, r,..., rn} of rational
numbers.

This is well known. B is called a Hamel basis. It is easily proved
that every linearly independent set (in the sense of rational coefficient)
is contained in a Hamel basis.

Example. Let R be the space of real numbers. There exists a
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subset GR satisfying the following three conditions:
1) G is an abstract subgroup of R.
2) G is a non-measurable (in the sense of Lebesgue) set of R.
3) G is a set which does not have the property of Baire.
Proof. Let B be a Hamel basis containing 1. Let H be the sub-

group of the rational numbers and G the subgroup which is generated
by the rational linear combinations of elements of B--{1}. Then it is
easily seen that R is decomposed into the direct sum of H and G.
Hence every element x R is written in the form x=h+g, where h e H
and g e G. We define f(x) g, for x=h+ g, h H, g G. Clearly f(x)
is a homomorphic mapping of R into itself. It is not hard to show
that f(x) is not continuous. Hence by Theorem I f(x) is not measur-
able. And by Theorem 2 f(x) is not a function which has the property
of Baire. Then we can easily prove that G satisfies the above con-

ditions 2) and 3). (Notice that H--0.)


