56. On Homomorphic Mappings

By Yoshimichi MBU

(Comm. by Z. SUETUNA, M.J.A., May 13, 1958)

In the theory of real valued functions we have

"Theorem A. Let R be the space of real numbers and $f(x)$ an additive function defined on R. If $f(x)$ is measurable (with respect to the Lebesgue measure), then $f(x)$ is continuous".

This is a well-known theorem. It will be natural to propose the following question, in connection with the above theorem:

"Let G and G^* be two topological groups and $\varphi(x)$ a homomorphic mapping of an abstract group G into an abstract group G^* . Under what conditions does it follow that $\varphi(x)$ is a continuous mapping of the topological group G into the topological group G^* "?

It is the purpose of the present paper to answer this question. First we shall extend Theorem A to ^a more general case (see Theorem 1). This generalization is the first answer for the above question. Next we shall prove a theorem (Theorem 2) which is the second answer for the above question. And we have, using our Theorems ¹ and 2 and the duality theorem of Pontrjagin, an interesting consequence (see Theorem 3).

Definition 1. Let G be an abstract space and m^* an outer measure in G. Let f be a mapping of G into a topological space Q . f is called an m^* -measurable mapping if the set $f^{-1}(U)$ is m^* -measurable for every open set $U \subseteq \Omega$.

Definition 2. Let G be a topological space. Let f be a mapping of G into a topological space Ω . f is called a mapping which has the property of Baire if the set $f^{-1}(U)$ has the property of Baire for every open set $U \subseteq \Omega$.

Definition 3. Let G be a topological group. G is called to be σ -bounded, if for every open set $U \subseteq G$ there exists a sequence a_1 , a_2, \dots, a_n, \dots of elements of G such that $G = \bigcup_{i=1}^n a_i U$.

Theorem 1. Let G be a locally compact group and m^* a leftinvariant Haar's outer measure in G. If f is an m^* -measurable homomorphic mapping of G into a σ -bounded topological group G^* , then f is continuous.

Proof. Let $H^* = f(G)$. If we introduce the relative topology in H^* , then H^* becomes a σ -bounded topological group. For the proof of our theorem it is sufficient to show that f is a continuous mapping of G into H^* . Let U^* be an arbitrary neighborhood of the identity

 e^* of H^* . There exists a neighborhood V^* of e^* such that $V^{*-1}V^* \subseteq U^*$. Let $V=f^{-1}(V^*)$. From Definition 1 we see that V is m^* -measurable. We shall show that $m(V) > 0$. There exists a sequence $a_1^*, a_2^*, \dots, a_n^*, \dots$ of elements of H^* such that $H^* = \bigcup_{i=1}^{\infty} a_i^* V^*$. We set $V_i = f^{-1}(a_i^* V^*)$, $i=1, 2, \cdots$ Then it is easily seen that each V_i is written in the form a_iV , where a_i is an arbitrary element of $f^{-1}(a_i^*)$. Hence we have $G = \bigcup_{i=1}^{\infty} a_i V$. From this we can easily see that $m(V) > 0$. There exists a neighborhood W of the identity e of G such that $W \subseteq V^{-1}V$ (this is the well-known fact in the theory of Haar's measure). Thus we have $f(W)\subseteq f(V^{-1}V)\subseteq V^{*-1}V^*\subseteq U^*$. This shows that f is continuous at e. On the other hand f is a homomorphic mapping of an abstract group G onto an abstract group H^* . Hence f is continuous at all points.

Corollary. Let R be the space of real numbers. And let $f(x)$ be a real-valued function defined on R such that $f(x+y)=f(x)+f(y)$. If $f(x)$ is a Lebesgue-measurable function, then $f(x)$ can be written in the form $f(x)=\lambda x$.

Lemma 1. Let G be a topological group whose open sets are all of the second category. And let $M \subseteq G$ be a subset which has the property of Baire. If M is of the second category, then $M^{-1}M$ contains a neighborhood V of the identity e of G .

Proof. Since M has the property of Baire, there exists an open set U such that the symmetric difference $M\ominus U$ is of the first category. On the other hand M is of the second category, and hence we can easily see that $U+0$. We take an arbitrary element a of U. There exists a neighborhood V of the identity e such that

(1) $VV^{-1} \subseteq a^{-1}U$.

We set $K=M\ominus U$. Then we have

(2) $V \subset V V^{-1} \subset a^{-1} U \subset a^{-1} M \setminus a^{-1} K$.

Let b be an arbitrary element of V . From (1) we have

(3) $Vb^{-1} \subseteq a^{-1}U \subseteq a^{-1}M \setminus a^{-1}K$, that is, $V \subseteq a^{-1}Mb \setminus a^{-1}Kb$.

Since V is of the second category and both $a^{-1}K$ and $a^{-1}Kb$ are of the first category, it is evident that (using (2) and (3))

(4) $(a^{-1}M_{\alpha}^{-1}Mb) \sim V+0$, that is, M_{Mb+0} .

This implies that for an arbitrary element $b \in V$ there exist elements $c \in M$ and $d \in M$ such that $c = db$, that is, $d^{-1}c = b$. Hence we have $M^{-1}M\supseteq V.$

By using Lemma 1, we can also prove Theorem 2 below.

Theorem 2. Let G be a topological group whose open sets are all of the second category. And let f be a homomorphic mapping of G into a σ -bounded topological group G^* . If f has the property of Baire, then f is continuous.

Theorem 3. Let G be a separable and locally compact abelian group. Suppose that G is not discrete. Then there exists at least one set $E_i \subseteq G$ which is not measurable with respect to the Haar measure in G. And further there exists at least one set $E_2 \subseteq G$ which does not have the property of Baire.

Proof. We introduce the discrete topology in G and denote this topological group by G^* . Let X and X^* be the character groups of G and G^* respectively. Then X is a separable and locally compact abelian group and X^* is a compact abelian group. Clearly an element $\chi \in X$ can be regarded as an element $\chi^* \in X^*$. To every $\chi \in X$ we correspond such an element $\chi^* \in X^*$. Then we have a mapping $\psi(\chi)$ $=\chi^*$ of X into X^{*}. It is easily seen that $\psi(\chi)$ is a continuous homomorphic mapping of the topological group X into the topological group X^* . We shall show that $\psi(X) \neq X^*$. Suppose that $\psi(X)=X^*$. Then Ψ^{-1} is also continuous. (This is a well-known fact in the theory of topological groups.) Hence X is homeomorphic with X^* and consequently a compact group. This implies that G is discrete. (Remember the duality theo sequently a compact group. This implies that G is discrete. (Remember the duality theorem of Pontrjagin.) Thus we have arrived at a contradiction. Hence there exists a $\chi^* \in X^*$ which does not belong to $\psi(X)$. Clearly χ^* is a homomorphic mapping of an abstract group G into an abstract group K (K is the factor group R/N , where R is the additive topological group of real numbers and N is the subgroup of all integers). But this is not a continuous mapping of G into K . Hence by Theorem 1 χ^* is not a measurable mapping (with respect to the Haar measure in G) of G into K, and by Theorem 2 χ^* is not a mapping which has the property of Baire. Consequently $\chi^{*-1}(U)$ is non-measurable for a certain open set $U \subseteq K$ and $\chi^{*-1}(V)$ is a set which does not have the property of Baire for a certain open set $V \subseteq K$. Setting $E_1 = \chi^{*-1}(U)$ and $E_2 = \chi^{*-1}(V)$, we obtain our theorem.

Lemma 2. Let R be the space of real numbers. Then there exists a set B with the properties:

1) For every $x \in R$ there exists a finite subset $\{x_1, x_2, \dots, x_n\}$ of B and a corresponding finite set $\{r_1, r_2, \dots, r_n\}$ of rational numbers such that $x = \sum_{i=1}^{n} r_i x_i$.

2) B is linearly independent with respect to rational coefficients, that is, $r_1x_1+r_2x_2+\cdots+r_nx_n=0$ implies $r_1=r_2=\cdots=r_n=0$ for every finite subset $\{x_1, x_2, \dots, x_n\}$ of B and a finite set $\{r_1, r_1, \dots, r_n\}$ of rational numbers.

This is well known. B is called a Hamel basis. It is easily proved that every linearly independent set (in the sense of rational coefficient) is contained in a Hamel basis.

Example. Let R be the space of real numbers. There exists a

subset $G \subseteq R$ satisfying the following three conditions:

- 1) G is an abstract subgroup of R .
- 2) G is a non-measurable (in the sense of Lebesgue) set of R .
- 3) G is a set which does not have the property of Baire.

Proof. Let B be a Hamel basis containing 1. Let H be the subgroup of the rational numbers and G the subgroup which is generated by the rational linear combinations of elements of $B-{1}$. Then it is easily seen that R is decomposed into the direct sum of H and G . Hence every element $x \in R$ is written in the form $x = h + g$, where $h \in H$ and $g \in G$. We define $f(x)=g$, for $x=h+g$, $h \in H$, $g \in G$. Clearly $f(x)$ is a homomorphic mapping of R into itself. It is not hard to show that $f(x)$ is not continuous. Hence by Theorem 1 $f(x)$ is not measurable. And by Theorem 2 $f(x)$ is not a function which has the property of Baire. Then we can easily prove that G satisfies the above conditions 2) and 3). (Notice that $\overline{H} = \mathbf{N}_0$.)