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79. On the Relations * Semi-between ”’ and
“ Parallel ” in Lattices

By Yataro MATSUSHIMA
Gunma University, Maebashi
(Comm. by K. KUNUGI, M.J.A., June 12, 1958)

In a recent paper [2], we have studied the concept of B-covers
in lattices as a generalization of the metric-betweeness in a normed
lattice which is investigated by L. M. Kelley [1], and discussed some
geometrical properties of lattices by means of B-covers and B*-covers
in [8, 4].

At first we shall introduce the concept of J-cover and CJ-cover
which will be considered as semi-between sets in lattices since the
B-covers are treated as between sets in lattices. For any two elements
a and b of a lattice L, we shall define as follows:

J(a,b)={z| (e ~x)—(b~x)=x}, CJ(a,b)={x|(a—a)~(b—x)=2}.

J(a,b) is called the J-cover of a and b, and if x¢J(a,b), then we shall
write J(axb). Similarly we shall define CJ-cover and CJ(axb). Further,
we define J*(a,b)={x|J(abx)}, CJ*(a,b)={x|CJ(abx)}, J(a,J*(a,b))=
{y|J(ayx) for all xeJ*(a,b)}, ete.

B(a,b)=J(a,b)~CJ(a,b) is called the B-cover of a and b; and we
write axb when xze B(a,b) (cf. [2-4]).

Next we shall define the notion of ‘“parallel” as follows: ab//cd
means that B*(a,b)~B*(c,d)=0, where B*(a,b)={x|abx}.

In §1 we shall give characterizations of modular or distributive
lattices by means of “semi-between”, and in §2 we shall consider the
geometrical properties of lattice polygons by the notion of “parallel”.

8§1. “Semi-between”. Lemma 1. (a]—(b]=J(a,b)(a—b], [a)~[b)
=CJ(a,b)C[a~b), where (x]={z|z=x}, [x)={z|2=2}, AcvB={zy]|
xecA,yeB} if A,BCL.

The proof is found in [2].

Lemma 2. J(axb) implies x~(a—b)=(a~2)—(b~x)=x; CJ(axb)
implies x—(a~b)=(a—x)~(b—x)=2x.

Lemma 8. J(abc), CJ(axb) and CJ(byc) imply J(xby). CJ(abc),
J(axd) and J(byc) imply CJ(xby).

Proof. We have b=b~x=a~b, b=b~y=b~c by CJ(awb),
CJ(bye), and hence b= (b~x)—(b~y)=(a~b)—(b~c)=b by J(abec);
thus we have (b~x)-—(b~y)=">, that is, J(xby).

Lemma 4. J(axb) and J(ayd) imply J(a(x—y)b). CJ(axdb) and
CJ(ayd) imply CJ(a(x~y)b). J(axb) and J(ayb) do mot mecessarily
imply J(a(x~y)b).
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Proof. Since x<av-b, y<a-b by J(axb), J(ayb), we have x—y
= (@)~ (@-y) = (@@= ) = (b~ @) = (a~2)—(a~Y)— (b~a)—
(b~y)=x-y, and hence we have (a~(x—y))— (b~ (x—y))=2-—y, that
is, J(a(x~y)b). If L contains elements a,b,%,¥,%, 2, %, ¥,, such that
a~b>x,>a, a~b>y,>b, a>r>a~b, b>y>a~b, x,—y,=a—b, x,~Yy,
=z, >x~y=2, r~yYy=a~b, a-z=avz,=x, boz=boz,=vy, a~z=
a~z, =&, b~z=b~2z, =y, then we have J(azxb), J(ay,b) but not
J(a(x; ~y)b).

Lemma 5. In case L is modular, J(axb) implies (a—~x)~(b—x)=
2~ (a~Db).

Proof. If J(axb), then we have by modularity (a—x)~(b—x)=2
(@) =w—(@~(a~2)— (b~ x) b)) =2 (a~(a~x)-b)=2
v(amx)u(amb)zxv(amb).

Lemma 6. In case L is modular, if xeB(a—b, a~b), then J(axb)
implies CJ(axb) and CJ(axb) implies J(axb).

Theorem 1.1. In order that L is a modular lattice it is mecessary
and sufficient that J(axb) implies (a—x)~(b—x)=2—(a~b).

Proof. If L is not modular, then there exist five elements a,b,
¢,d,x such that c=a-b=wx-b, d=a~b=x~b, d<x<a<c. In this
case we have J(axb) but (a—2x)~(bwx)=a>x=2—(a~b). By Lemma
5 this completes the proof.

Theorem 1.2. In case L is modular, if x,y < B(a—b, a~b), then
J(axb) and J(ayb) imply a(x—y)d, a(x~y)b.

Proof. It is obvious from Lemmas 4 and 6.

Lemma 7. J(abc) implies a(a—b)e. CJ(abc) implies ala~Db)c.

Proof. We have b=(a~b)—(b~c) < a—(b~c¢), a<a—(b~c), and
hence a-b=a—(b~c)<a—b, thus we have a—(b~c)=a—b.

Accordingly we have a-b=a-(b~c)=a—(a~c)—(b~c)<aw-
((a~b)~c) < a—b—((a~b)~c)=a—b, hence a—((a—b)~c)=a>b, that
is, J(a(a—b)c). Since CJ(a(a—b)c) is trivial we have a(a‘—b)c.

Lemma 8. J(abc) implies J((a ~b)bc) and vice versa.

Lemma 9. In order that L is a distributive lattice it is necessary
and sufficient that the condition (D) below holds for any elements a,b
of L.

(D) xed(a,b) if and only if ©<ab.

Proof. It is proved in the same way as Theorem 3 [2].

Theorem 1.3. In any lattice we have the following inequalities:

@ J*(a,b) C J*(a,a—b), CJ*(a,b) CJ*(a,a~b),

® J*(@a~b,a—b)CJ*(a,a~b)~J*(b,a—b), CJ*(a—b,a~b)

CCJI*(a,a~b)~CJT*(b,a~b).

We have the equalities in @), @ for a distributive lattice.

Proof. The proof of @ is obtained by Lemma 7.

® Since CJ((a~b)a (a—b)) and CJ((a~b)b(a—b)) are trivial, sup-
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pose that J((a~b) (a~—~b)x); then we have J(a(a-—b)x), J(b(a—b)x) by
Lemma 3. In case L is distributive, for @ if we take xe¢J*(a,a—b)
~J*(b,a—b), then we have a—b=<avwx, a~b<b-x by Lemma 2, and
hence a-b =< (a—x)~(b—z)=2—(a~b) by distributive law, thus we
have (a~b)(a—b)x by Lemma 9.

Similarly we may prove the remaining parts.

Theorem 1.4. In any lattice we have the following equalities:

@ T*(a,b)=J*(@~b,b), CJ*(a,b)=CJ*(ab,b),
@  J*CJ(a,b),b)=J*(a,b), CT*(J(a,b),b)=CJ*(a,b),
® J*(CJ(a, T *(a,b)),a)=J *(b,a).

Proof. @ It is obvious by Lemma 8.

@ Since it is trivial that J*(CJ(a,b),b) CJ*(a,b), we shall prove
the inverse relation. If we take x from J*(a,b), then for any
yeCJ(a,b) we have J(ybxr) by Lemma 3, and hence x belongs to
J*(CJ(a,b),b).

® Since CJ(a,b) DCJ(a,J*(a,b))sd, and J*(b,a)=J*(CJ(a,b),a) by
®, we have J*(b,a)=J*(CJ(a,b),a)J*(CJ(a,J*(a,b)),a) C J*(b,a),
and hence we have the equality of 3.

Lemma 10. In any lattice J(a,b)=J(c,d) implies a~b=c—d, and
CJ(a,b)=CJ(c,d) implies a~b=c~d.

We have the converse of Lemma 10 in a distributive lattice.

Theorem 1.5. In a lattice L suppose that J*(a,B(a,a—b))=a b,
then @) a~—b is a maximal element,

@ if a and b are non-comparable, then there exists at least one
element x in L such that a<x<a-—b and x does not belong to J(a,b).

It is proved in the same way as (1), §4 [5].

Lemma 11. CJ(axb) for xe B(b,a~b) implies a—xeJ(a,b); J(ayb)
Jor yeB(a,a—b) tmplies b~y <cCJ(a,d).

Proof. Suppose that CJ(awxd) for x< B(b,a~b); then we have z=
(a~x)~(b—x)=(a—x)~b, and hence we have (a~(a—x))—((a—x)~b)
=aw, that is, J(a(a—x)b). Similarly we have the other part.

Theorem 1.6. Suppose that CJ(a,b)DB(b,a~b) and J(a,b)D
B(a,a~b) in a lattice L; then B(a,a—b) is isomorphic to B(b,a~b).

Proof. For x,¢CJ(a,b) where a~b<z,<b ¢=12 we have
b~(avwr)=(bvr,)~(a—a)==. Similarly we have (b~y,)wa=(b~y))
w(a~y,)=y; for a=y,=av-b, y,eJ(a,b), 7=1,2. Hence if avz,=
a—%, then we have x,=u,.

These mappings x,—>a—w, yY,~>b~y, preserve order and are
inverses of each other.

Lemma 12. J(alb) implies a—b=1, CJ(aOb) implies a ~b=0.

Theorem 1.7. Suppose that beJ*(a,I)~CJ*(a,0); then we have
J*(a,b)=[b), CJ*(a,b)=(b].

Proof. If beJ*(a,I)~CJ*(a,0), then we have a-b=1I, a~b=0
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by Lemma 12, and hence by Theorem 1.4 we have J*(a,b)=J*(a~b,b)
=J*(0,b)=[b) since b~x=>b from (O~b)—(b~x)=b. Similarly we have
CJ*(a,b)=CJ *(a—b,b)=CJ *(1,b)=(b].

§2. “Parallel”. Henceforth we shall consider a lattice polygon as
a sublattice of L, accordingly the notion of parallel is considered for
all elements in L. For elements a,b,¢,d of L, by “a quad-rangle abed”
we shall mean that a,b are non-comparable and a-—b=¢, a~b=d.

Theorem 2.1. In a lattice quad-rangle abed we have

@ cb//da, ca//db,

® cd /] db.

Proof. (@ Suppose that cbx, dax; then a=(d~a)—(a~x)=(a~b)
w(a~z)Za~(b—x)<(a—b)~(b—x)=>, this contradicts the hypothesis.

® If cdx, then d=c~(d—x)=d—(c~x)=d, and hence we have
d—(c~x)=d, then b~x<c~x<d. However dbx does not hold, for
d—(b~x)=d=b.

Corollary. In a lattice quad-rangle abed we have

@ ab//ba
@ ca/lab
® ab//cd.

Proof. @ B*(a,b)=B*(a—b,b)~B*(a~b,b), B*(b,a)=B*(b-—a,a)
~B*(b~a,a) by (1), 85 [38]. Since B*(a—b,b)~B*(a~b,a)=0 from
Theorem 2.1 we have ab//ba. @ By (1), §5 [3], we have B*(a,b)C
B*(d,b) and B*(d,b)~B*(¢,a)=0 by Theorem 2.1, hence we have ca //ab.
The proof of () is obvious from (2, Theorem 2.1 and (1), §5 [3].

Theorem 2.2. In a lattice quad-rangle abed, if there exist two
elements e,f such that a<e<c,d<f<b, b~e=f, a— f=e, then we have

@ be//af

@ eb/] fa.

Proof. @ At first we shall prove e¢f//fe. Suppose that e>f,
efx, fex; then f=(e— f)~(f—x)=f—(e~x)=e, this contradicts the
hypothesis. On the other hand, B*(b,e)=B*(¢,e)~B*(f,e), B*(a,f)
=B*(e, f)~B*(d,f) by (1), §5 [8]; thus we have be//af. @ is ob-
tained from cb//da.

Theorem 2.8. In a lattice polygon im L which consists of the two
maximal chains {a,}, {b,} with the condition (C) such that a,>a,_, >
.o .>-ai>-. . .>~am bm>'bm—1>'° . .>-bj>-. . ->~b0, a,o,:bo’ an_—'—bm’

©) a;~b,=a, a,~b,=a,.

We have aa,//bb,, where i=1,2,---,n, l=m, m—1,--+,2; I>k=>=1.

Proof. If a.mx, then a,=a,—(a;~x). However bb,x does not
hold, that is, b,~(b,~x)==b,. Indeed we have b,—x=b,—a,—(a,~)
=b,—a,=a, Hence b,~(b,—~2x)=b,b,.

Corollary. In the lattice polygon of Theorem 2.3, we have

@D abi/la,a, abllae, =12, -+, m, k=01, m, 0<h<i,i<k=mn.
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® a,a.//ba;, a,0.//ba, 1=1,2,- -, n—1,k=12,---,m—1, 0<s'<s
<1, 1<t<t' <n.

Proof. (@ Since B*(a;, b,)C B*(a, b,) by (1), §5 [3] we have
a,b.//a,a, by the dual of Theorem 2.3, and hence we have a;b.//a,a;.
Similarly we have the proof of (@.

Theorem 2.4. In order that the lattice polygon of Theorem 2.3
has a diagonal, that is, it has the condition (D) instead of (C), it is
necessary and sufficient that the condition (E) below holds.

(D) a,>b, ay—b,=a, a,~b,=b, for k<k'<n, I<l'=<m and
Crr ~byr=a,, @ ~by.=a, for 0<k’' <k, 0<l’<l.

(E) ab bbb, 150, m; E0,n.

Proof. If the lattice polygon has the condition (D), then we have
a;bb,, hence B*(a,,b,)~B*(b,b,)>b,, that is, a,b,4bb,. If it has no
diagonal, then we have a.b,//bb,, by the corollary of Theorem 2.3.

Corollary. In the lattice polygon with the condition (D), we have

@) by 100 Qgery

®@ B*(a»,b,) C B*(a,,b,).

Proof. @O By (1), 85 [38], we have B*(ay,b,)B*(a, b,),
B*(b,,, a,,,) C B*(ay, a;,). However au,.//a,b, by Theorem 2.3, and
hence we have a,b, //b..a;..

® Since abb,, ab,x imply bbd,x by Lemma 4 [2], we have
B*(a,,b,) B*(b, b,). Hence we have B*(a,.,b,)C B*(a:,b,) by (1),
85 [3].

(a,b) M* means that a,b do not form a relative modular pair
(ef. [4]).

Theorem 2.5. The mecessary and sufficient condition for (a,b)
M* in o lattice quad-rangle abed is that there exists at least onme
element b’ such that ab’[/b'b, d<b <b.

Proof. If (a,b) M*, there exists b’ such that b’ (a ~b)=b<(b'—a)
~b, d<b’<b. Let b'—a=f, f~b=b", then we have f=¢, d<b' <
b’ <b. In this case if b'bx, then we have b'—(b~x)=b. However
fb'x does not hold, for (f b )~(b'—wx)=Ff~(b'w2)= f~b—(b~2))=
f~b=b">b. Hence we have ab’ //b'b since B*(a,b’)=B*(f,b)~
B*(d,b).

Next if (a,b) M*, then for any d<b'<b we have b’ € B(a,b), that
is, there exists ¢ such that ¢’>¥, ¢>c¢'>a. Then we have ab’b, and
hence be B*(a,b’), thus B*(a,b)~B*(b’,b) =0, this completes the proof.

Following L. R. Wilecox [5] by a//b we mean that a~b=0, (a,b)
M*.

Corollary. The mecessary and sufficient condition for a//b in a
lattice quad-rangle abed, where d=0, is ab’/[/b'd for d<b <b.
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