79. On the Relations "Semi-between" and " Parallel" in Lattices

By Yataro Matsushima
Gunma University, Maebashi
(Comm. by K. Kunugi, m.J.A., June 12, 1958)

In a recent paper [2], we have studied the concept of B-covers in lattices as a generalization of the metric-betweeness in a normed lattice which is investigated by L. M. Kelley [1], and discussed some geometrical properties of lattices by means of B-covers and B^{*}-covers in $[3,4]$.

At first we shall introduce the concept of J-cover and $C J$-cover which will be considered as semi-between sets in lattices since the B-covers are treated as between sets in lattices. For any two elements a and b of a lattice L, we shall define as follows:
$J(a, b)=\{x \mid(a \frown x) \smile(b \frown x)=x\}, C J(a, b)=\{x \mid(a \smile x) \frown(b \smile x)=x\}$.
$J(a, b)$ is called the J-cover of a and b, and if $x \in J(a, b)$, then we shall write $J(a x b)$. Similarly we shall define $C J$-cover and $C J(a x b)$. Further, we define $J^{*}(a, b)=\{x \mid J(a b x)\}, C J^{*}(a, b)=\{x \mid C J(a b x)\}, J\left(a, J^{*}(a, b)\right)=$ $\left\{y \mid J(a y x)\right.$ for all $\left.x \in J^{*}(a, b)\right\}$, etc.
$B(a, b)=J(a, b) \frown C J(a, b)$ is called the B-cover of a and b; and we write $a x b$ when $x \in B(a, b)$ (cf. [2-4]).

Next we shall define the notion of "parallel" as follows: $a b / / c d$ means that $B^{*}(a, b) \frown B^{*}(c, d)=0$, where $B^{*}(a, b)=\{x \mid a b x\}$.

In $\S 1$ we shall give characterizations of modular or distributive lattices by means of "semi-between", and in § 2 we shall consider the geometrical properties of lattice polygons by the notion of "parallel".
§1. "Semi-between". Lemma 1. (a] $(b]=J(a, b) \subset(a \smile b],[a) \frown[b)$ $=C J(a, b) \subset[a \frown b)$, where $(x]=\{z \mid z \leqq x\},[x)=\{z \mid z \geqq x\}, A \smile B=\{x \smile y \mid$ $x \in A, y \in B\}$ if $A, B \subset L$.

The proof is found in [2].
Lemma 2. $J(a x b)$ implies $x \frown(a \smile b)=(a \frown x) \smile(b \frown x)=x ; \quad C J(a x b)$ implies $x \smile(a \frown b)=(a \smile x) \frown(b \smile x)=x$.

Lemma 3. $J(a b c), C J(a x b)$ and $C J(b y c)$ imply $J(x b y) . \quad C J(a b c)$, $J(a x b)$ and $J(b y c)$ imply $C J(x b y)$.

Proof. We have $b \geqq b \frown x \geqq a \frown b, b \geqq b \frown y \geqq b \frown c$ by $C J(a x b)$, $C J(b y c)$, and hence $b \geqq(b \frown x) \smile(b \frown y) \geqq(a \frown b) \smile(b \frown c)=b$ by $J(a b c)$; thus we have $(b \frown x) \cup(b \frown y)=b$, that is, $J(x b y)$.

Lemma 4. $J(a x b)$ and $J(a y b)$ imply $J(a(x \smile y) b) . \quad C J(a x b)$ and $C J(a y b)$ imply $C J(a(x \frown y) b)$. $J(a x b)$ and $J(a y b)$ do not necessarily imply $J(a(x \frown y) b)$.

Proof. Since $x \leqq a \smile b, y \leqq a \smile b$ by $J(a x b)$, $J(a y b)$, we have $x \smile y$ $=(a \smile b) \frown(x \smile y) \geqq(a \frown(x \smile y)) \smile(b \frown(x \smile y)) \geqq(a \frown x) \smile(a \frown y) \smile(b \frown x) \smile$ $(b \frown y)=x \smile y$, and hence we have $(a \frown(x \smile y)) \smile(b \frown(x \smile y))=x \smile y$, that is, $J(a(x \smile y) b)$. If L contains elements $a, b, x, y, z, z_{1}, x_{1}, y_{1}$, such that $a \smile b>x_{1}>a, a \smile b>y_{1}>b, a>x>a \frown b, b>y>a \frown b, x_{1} \smile y_{1}=a \smile b, x_{1} \frown y_{1}$ $=z_{1}>x \smile y=z, x \frown y=a \frown b, \quad a \smile z=a \smile z_{1}=x_{1}, \quad b \smile z=b \smile z_{1}=y_{1}, \quad a \frown z=$ $a \frown z_{1}=x, b \frown z=b \frown z_{1}=y$, then we have $J\left(a x_{1} b\right), J\left(a y_{1} b\right)$ but not $J\left(a\left(x_{1} \frown y_{1}\right) b\right)$.

Lemma 5. In case L is modular, $J(a x b)$ implies $(a \smile x) \frown(b \smile x)=$ $x \smile(a \frown b)$.

Proof. If $J(a x b)$, then we have by modularity $(a \smile x) \frown(b \smile x)=x$ $\smile(a \frown(b \smile x))=x \smile(a \frown((a \frown x) \smile(b \frown x) \smile b))=x \smile(a \frown((a \frown x) \smile b))=x$ $\smile(a \frown x) \smile(a \frown b)=x \smile(a \frown b)$.

Lemma 6. In case L is modular, if $x \in B(a \smile b, a \frown b)$, then $J(a x b)$ implies $C J(a x b)$ and $C J(a x b)$ implies $J(a x b)$.

Theorem 1.1. In order that L is a modular lattice it is necessary and sufficient that $J(a x b)$ implies $(a \smile x) \frown(b \smile x)=x \smile(a \frown b)$.

Proof. If L is not modular, then there exist five elements a, b, c, d, x such that $c=a \smile b=x \smile b, d=a \frown b=x \frown b, d<x<a<c$. In this case we have $J(a x b)$ but $(a \smile x) \frown(b \smile x)=a>x=x \smile(a \frown b)$. By Lemma 5 this completes the proof.

Theorem 1.2. In case L is modular, if $x, y \in B(a \smile b, a \frown b)$, then $J(a x b)$ and $J(a y b)$ imply $a(x \smile y) b, a(x \frown y) b$.

Proof. It is obvious from Lemmas 4 and 6.
Lemma 7. $J(a b c)$ implies $a(a \smile b) c$. CJ $(a b c)$ implies $a(a \frown b) c$.
Proof. We have $b=(a \frown b) \smile(b \frown c) \leqq a \smile(b \frown c), a \leqq a \smile(b \frown c)$, and hence $a \smile b \leqq a \smile(b \frown c) \leqq a \smile b$, thus we have $a \smile(b \frown c)=a \smile b$.

Accordingly we have $a \smile b=a \smile(b \frown c)=a \smile(a \frown c) \smile(b \frown c) \leqq a \smile$ $((a \smile b) \frown c) \leqq a \smile b \smile((a \smile b) \frown c)=a \smile b$, hence $a \smile((a \smile b) \frown c)=a \smile b$, that is, $J(a(a \smile b) c)$. Since $C J(a(a \smile b) c)$ is trivial we have $a(a \smile b) c$.

Lemma 8. $J(a b c)$ implies $J((a \frown b) b c)$ and vice versa.
Lemma 9. In order that L is a distributive lattice it is necessary and sufficient that the condition (D) below holds for any elements a,b of L.
(D) $x \in J(a, b)$ if and only if $x \leqq a \smile b$.

Proof. It is proved in the same way as Theorem 3 [2].
Theorem 1.3. In any lattice we have the following inequalities:

$$
\begin{gather*}
J^{*}(a, b) \subset J^{*}(a, a \smile b), C J^{*}(a, b) \subset C J^{*}(a, a \frown b), \tag{1}\\
J^{*}(a \frown b, a \smile b) \subset J^{*}(a, a \smile b) \frown J^{*}(b, a \smile b), C J^{*}(a \smile b, a \frown b) \tag{2}\\
\subset C J^{*}(a, a \frown b) \frown C J^{*}(b, a \frown b) .
\end{gather*}
$$

We have the equalities in (1), (2) for a distributive lattice.
Proof. The proof of (1) is obtained by Lemma 7.
(2) Since $C J((a \frown b) a(a \smile b))$ and $C J((a \frown b) b(a \smile b))$ are trivial, sup-
pose that $J((a \frown b)(a \smile b) x)$; then we have $J(a(a \smile b) x), J(b(a \smile b) x)$ by Lemma 3. In case L is distributive, for (2) if we take $x \in J^{*}(a, a \smile b)$ $\frown J^{*}(b, a \smile b)$, then we have $a \smile b \leqq a \smile x, a \smile b \leqq b \smile x$ by Lemma 2 , and hence $a \smile b \leqq(a \smile x) \frown(b \smile x)=x \smile(a \frown b)$ by distributive law, thus we have $(a \frown b)(a \smile b) x$ by Lemma 9 .

Similarly we may prove the remaining parts.
Theorem 1.4. In any lattice we have the following equalities:

$$
\begin{equation*}
J^{*}(a, b)=J^{*}(a \frown b, b), C J^{*}(a, b)=C J^{*}(a \smile b, b), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
J^{*}(C J(a, b), b)=J^{*}(a, b), C J^{*}(J(a, b), b)=C J^{*}(a, b), \tag{2}
\end{equation*}
$$

(3)

$$
J^{*}\left(C J\left(a, J^{*}(a, b)\right), a\right)=J^{*}(b, a)
$$

Proof. (1) It is obvious by Lemma 8.
(2) Since it is trivial that $J^{*}(C J(a, b), b) \subset J^{*}(a, b)$, we shall prove the inverse relation. If we take x from $J^{*}(a, b)$, then for any $y \in C J(a, b)$ we have $J(y b x)$ by Lemma 3 , and hence x belongs to $J^{*}(C J(a, b), b)$.
(3) Since $C J(a, b) \supset C J\left(a, J^{*}(a, b)\right) \ni b$, and $J^{*}(b, a)=J^{*}(C J(a, b), a)$ by (2), we have $J^{*}(b, a)=J^{*}(C J(a, b), a) \subset J^{*}\left(C J\left(a, J^{*}(a, b)\right), a\right) \subset J^{*}(b, a)$, and hence we have the equality of (3).

Lemma 10. In any lattice $J(a, b)=J(c, d)$ implies $a \smile b=c \smile d$, and $C J(a, b)=C J(c, d)$ implies $a \frown b=c \frown d$.

We have the converse of Lemma 10 in a distributive lattice.
Theorem 1.5. In a lattice L suppose that $J^{*}(a, B(a, a \smile b))=a \smile b$, then (1) $a \cup b$ is a maximal element,
(2) if a and b are non-comparable, then there exists at least one element x in L such that $a<x<a \smile b$ and x does not belong to $J(a, b)$.

It is proved in the same way as (1), §4 [5].
Lemma 11. $C J(a x b)$ for $x \in B(b, a \frown b)$ implies $a \smile x \in J(a, b) ; J(a y b)$ for $y \in B(a, a \smile b)$ implies $b \frown y \in C J(a, b)$.

Proof. Suppose that $C J(a x b)$ for $x \in B(b, a \frown b)$; then we have $x=$ $(a \smile x) \frown(b \smile x)=(a \smile x) \frown b$, and hence we have $(a \frown(a \smile x)) \smile((a \smile x) \frown b)$ $=a \smile x$, that is, $J(a(a \smile x) b)$. Similarly we have the other part.

Theorem 1.6. Suppose that $C J(a, b) \supset B(b, a \frown b)$ and $J(a, b) \supset$ $B(a, a \smile b)$ in a lattice L; then $B(a, a \smile b)$ is isomorphic to $B(b, a \frown b)$.

Proof. For $x_{i} \in C J(a, b)$ where $a \frown b \leqq x_{i} \leqq b, i=1,2$, we have $b \frown\left(a \smile x_{i}\right)=\left(b \smile x_{i}\right) \frown\left(a \smile x_{i}\right)=x_{i}$. Similarly we have $\left(b \frown y_{j}\right) \smile a=\left(b \frown y_{j}\right)$ $\smile\left(a \frown y_{j}\right)=y_{j}$ for $a \leqq y_{j} \leqq a \smile b, y_{j} \in J(a, b), j=1,2$. Hence if $a \smile x_{1}=$ $a \smile x_{2}$, then we have $x_{1}=x_{2}$.

These mappings $x_{i} \rightarrow a \smile x_{i}, y_{j} \rightarrow b \frown y_{j}$ preserve order and are inverses of each other.

Lemma 12. $J(a I b)$ implies $a \smile b=I, C J(a O b)$ implies $a \frown b=0$.
Theorem 1.7. Suppose that $b \in J^{*}(a, I) \frown C J^{*}(a, O)$; then we have $J^{*}(a, b)=[b), C J^{*}(a, b)=(b]$.

Proof. If $b \in J^{*}(a, I) \frown C J^{*}(a, O)$, then we have $a \smile b=I, a \frown b=O$
by Lemma 12, and hence by Theorem 1.4 we have $J^{*}(a, b)=J^{*}(a \frown b, b)$ $=J^{*}(O, b)=[b)$ since $b \frown x=b$ from $(O \frown b) \smile(b \frown x)=b$. Similarly we have $C J^{*}(a, b)=C J^{*}(a \smile b, b)=C J^{*}(I, b)=(b]$.
§2. "Parallel". Henceforth we shall consider a lattice polygon as a sublattice of L, accordingly the notion of parallel is considered for all elements in L. For elements a, b, c, d of L, by " a quad-rangle abcd" we shall mean that a, b are non-comparable and $a \smile b=c, a \frown b=d$.

Theorem 2.1. In a lattice quad-rangle abcd we have
(2)

$$
\begin{equation*}
c b / / d a, c a / / d b \tag{1}
\end{equation*}
$$ $c d / / d b$.

Proof. (1) Suppose that $c b x$, $d a x$; then $a=(d \frown a) \smile(a \frown x)=(a \frown b)$ $\smile(a \frown x) \leqq a \frown(b \smile x) \leqq(a \smile b) \frown(b \smile x)=b$, this contradicts the hypothesis.
(2) If $c d x$, then $d=c \frown(d \smile x) \geqq d \smile(c \frown x) \geqq d$, and hence we have $d \smile(c \frown x)=d$, then $b \frown x \leqq c \frown x \leqq d$. However $d b x$ does not hold, for $d \smile(b \frown x)=d \neq b$.

Corollary. In a lattice quad-rangle abcd we have
(2)
$a b / / b a$
$c a / / a b$
(3)
$a b / / c d$.
Proof. (1) $B^{*}(a, b)=B^{*}(a \smile b, b) \frown B^{*}(a \frown b, b), B^{*}(b, a)=B^{*}(b \smile a, a)$ $\frown B^{*}(b \frown a, a)$ by (1), §5 [3]. Since $B^{*}(a \smile b, b) \frown B^{*}(a \frown b, a)=0$ from Theorem 2.1 we have $a b / / b a$. (2) By (1), §5 [3], we have $B^{*}(a, b) \subset$ $B^{*}(d, b)$ and $B^{*}(d, b) \frown B^{*}(c, a)=0$ by Theorem 2.1, hence we have $c a / / a b$. The proof of (3) is obvious from (2), Theorem 2.1 and (1), §5 [3].

Theorem 2.2. In a lattice quad-rangle abcd, if there exist two elements e,f such that $a<e<c, d<f<b, b \frown e=f, a \cup f=e$, then we have

Abstract

be //af

(2)

eb//fa.

Proof. (1) At first we shall prove ef //fe. Suppose that $e>f$, $e f x$, fex; then $f=(e \smile f) \frown(f \smile x) \geqq f \smile(e \frown x)=e$, this contradicts the hypothesis. On the other hand, $B^{*}(b, e)=B^{*}(c, e) \frown B^{*}(f, e), B^{*}(a, f)$ $=B^{*}(e, f) \cap B^{*}(d, f)$ by (1), §5 [3]; thus we have be//af. (2) is obtained from $c b / / d a$.

Theorem 2.3. In a lattice polygon in L which consists of the two maximal chains $\left\{a_{n}\right\},\left\{b_{m}\right\}$ with the condition (C) such that $a_{n} \succ a_{n-1} \succ$ $\cdots \succ a_{i} \succ \cdots \succ a_{0}, b_{m} \succ b_{m-1} \succ \cdots \succ b_{j} \succ \cdots \succ b_{0}, a_{0}=b_{0}, a_{n}=b_{m}$,

$$
\begin{equation*}
a_{i} \frown b_{j}=a_{0}, a_{i} \smile b_{j}=a_{n} . \tag{C}
\end{equation*}
$$

We have $a_{0} a_{i} / / b_{l} b_{k}$, where $i=1,2, \cdots, n, l=m, m-1, \cdots, 2 ; l>k \geqq 1$.
Proof. If $a_{0} a_{i} x$, then $a_{i}=a_{0} \smile\left(a_{i} \frown x\right)$. However $b_{l} b_{k} x$ does not hold, that is, $b_{l} \frown\left(b_{k} \smile x\right) \neq b_{k}$. Indeed we have $b_{k} \smile x \geqq b_{k} \smile a_{0} \smile\left(a_{i} \frown x\right)$ $=b_{k} \smile a_{i}=a_{n}$. Hence $b_{l} \frown\left(b_{k} \smile x\right)=b_{l} \neq b_{k}$.

Corollary. In the lattice polygon of Theorem 2.3, we have (1) $a_{i} b_{k} / / a_{h} a_{i}, a_{i} b_{k} / / a_{k} a_{i}, i=1,2, \cdots, n, k=0,1, \cdots, m, 0 \leqq h<i, i<k \leqq n$.
(2) $a_{s} a_{s^{\prime}} / / b_{k} a_{i}, a_{t} a_{i^{\prime}} / / b_{k} a_{i}, i=1,2, \cdots, n-1, k=1,2, \cdots, m-1,0 \leqq s^{\prime}<s$ $\leqq i, i \leqq t<t^{\prime} \leqq n$.

Proof. (1) Since $B^{*}\left(a_{i}, b_{k}\right) \subset B^{*}\left(a_{n}, b_{k}\right)$ by (1), §5 [3] we have $a_{n} b_{k} / / a_{n} a_{i}$ by the dual of Theorem 2.3, and hence we have $a_{i} b_{k} / / a_{h} a_{i}$. Similarly we have the proof of (2).

Theorem 2.4. In order that the lattice polygon of Theorem 2.3 has a diagonal, that is, it has the condition (D) instead of (C), it is necessary and sufficient that the condition (E) below holds.
(D) $\quad a_{k}>b_{l}, \quad a_{k^{\prime}} \cup b_{l^{\prime}}=a_{n} \cdot a_{k^{\prime}} \cap b_{l^{\prime}}=b_{l}$ for $k \leqq k^{\prime}<n, l<l^{\prime} \leqq m$ and $a_{k^{\prime \prime}} \frown b_{l^{\prime \prime}}=a_{0}, a_{k^{\prime \prime}} \cup b_{l^{\prime \prime}}=a_{k}$ for $0<k^{\prime \prime} \leqq k, 0<l^{\prime \prime}<l$.
(E) $a_{k} b_{l} \nmid b_{l} b_{l^{\prime}}, l \neq 0, m ; k \neq 0, n$.

Proof. If the lattice polygon has the condition (D), then we have $a_{k} b_{l} b_{l^{\prime}}$, hence $B^{*}\left(a_{k}, b_{l}\right) \frown B^{*}\left(b_{l}, b_{l^{\prime}}\right) \ni b_{l^{\prime}}$, that is, $a_{k} b_{l} \ngtr>b_{l} b_{l^{\prime}}$. If it has no diagonal, then we have $a_{k} b_{l} / / b_{l} b_{l}$, by the corollary of Theorem 2.3.

Corollary. In the lattice polygon with the condition (D), we have

$$
\begin{align*}
& a_{k^{\prime}} b_{l^{\prime}} / / b_{l^{\prime}} a_{k^{\prime \prime}}, \tag{1}\\
& B^{*}\left(a_{k^{\prime}}, b_{l^{\prime}}\right) \subset B^{*}\left(a_{k^{\prime}}, b_{l^{\prime}}\right) .
\end{align*}
$$

Proof. (1) By (1), §5 [3], we have $B^{*}\left(a_{k^{\prime}}, b_{l^{\prime}}\right) \subset B^{*}\left(a_{n}, b_{l^{\prime}}\right)$, $B^{*}\left(b_{l^{\prime \prime}}, a_{k^{\prime \prime}}\right) \subset B^{*}\left(a_{0}, a_{k^{\prime \prime}}\right)$. However $a_{0} a_{k^{\prime \prime}} / / a_{n} b_{l^{\prime}}$ by Theorem 2.3, and hence we have $a_{k^{\prime}} b_{l^{\prime}} / / b_{l^{\prime}}, a_{k^{\prime \prime}}$.
(2) Since $a_{0} b_{l} b_{l}, a_{0} b_{l} x$ imply $b_{l} b_{l} x$ by Lemma 4 [2], we have $B^{*}\left(a_{0}, b_{l^{\prime}}\right) \subset B^{*}\left(b_{l}, b_{l^{\prime}}\right)$. Hence we have $B^{*}\left(a_{k^{\prime}}, b_{l^{\prime}}\right) \subset B^{*}\left(a_{k^{\prime}}, b_{l^{\prime}}\right)$ by (1), §5 [3].
$(a, b) \bar{M}^{*}$ means that a, b do not form a relative modular pair (cf. [4]).

Theorem 2.5. The necessary and sufficient condition for (a,b) \bar{M}^{*} in a lattice quad-rangle abcd is that there exists at least one element b^{\prime} such that $a b^{\prime} / / b^{\prime} b, d<b^{\prime}<b$.

Proof. If $(a, b) \bar{M}^{*}$, there exists b^{\prime} such that $b^{\prime} \smile(a \frown b)=b^{\prime}<\left(b^{\prime} \smile a\right)$ $\frown b, d<b^{\prime}<b$. Let $b^{\prime} \smile a=f, f \frown b=b^{\prime \prime}$, then we have $f \leqq c, d<b^{\prime}<$ $b^{\prime \prime} \leqq b$. In this case if $b^{\prime} b x$, then we have $b^{\prime} \smile(b \frown x)=b$. However $f b^{\prime} x$ does not hold, for $\left(f \smile b^{\prime}\right) \frown\left(b^{\prime} \smile x\right)=f \frown\left(b^{\prime} \smile x\right) \geqq f \frown\left(b^{\prime} \smile(b \frown x)\right)=$ $f \frown b=b^{\prime \prime}>b^{\prime}$. Hence we have $a b^{\prime} / / b^{\prime} b$ since $B^{*}\left(a, b^{\prime}\right)=B^{*}\left(f, b^{\prime}\right) \frown$ $B^{*}\left(d, b^{\prime}\right)$.

Next if $(a, b) M^{*}$, then for any $d<b^{\prime}<b$ we have $b^{\prime} \in B(a, b)$, that is, there exists c^{\prime} such that $c^{\prime}>b^{\prime}, c>c^{\prime}>a$. Then we have $a b^{\prime} b$, and hence $b \in B^{*}\left(a, b^{\prime}\right)$, thus $B^{*}\left(a, b^{\prime}\right) \frown B^{*}\left(b^{\prime}, b\right) \neq 0$, this completes the proof.

Following L. R. Wilcox [5] by $a / / b$ we mean that $a \frown b=0$, (a, b) \bar{M}^{*}.

Corollary. The necessary and sufficient condition for $a / / b$ in α lattice quad-rangle abcd, where $d=0$, is $a b^{\prime} / / b^{\prime} b$ for $d<b^{\prime}<b$.

References

[1] L. M. Kelley: The geometry of normed lattice, Duke Math. J., 19 (1952).
[2] Y. Matsushima: On the B-covers in lattices, Proc. Japan Acad., 32 (1956).
[3] Y. Matsushima: The geometry of lattices by B-covers, Proc. Japan Acad., 33 (1957).
[4] Y. Matsushima: On B-covers and the notion of independence in lattices, Proc. Japan Acad., 33 (1957).
[5] L. R. Wilcox: Modularity in the theory of lattices, Ann. Math., 40 (1939).

