93. A Generalization of Morita's Theorem concerning Generalized Uni-serial Algebras

By Yutaka KAWADA Chitose High School, Tokyo (Comm. by K. SHODA, M.J.A., July 12, 1958)

Recently K. Morita [1] has obtained the following theorem: a finite dimensional (associative) algebra A over a commutative field is generalized uni-serial if and only if every residue class algebra of A is a QF-3 algebra.

In this note we shall establish, by making use of notion of QF-3 rings introduced by H. Tachikawa, a generalization of this theorem for the case of rings with minimum condition for left and right ideals.

1. Throughout this note a ring will be assumed to have a unit element 1 and to satisfy the minimum (whence the maximum) condition for left and right ideals.

Following R. M. Thrall [2] we shall say that for a ring A, a faithful left A-module U is a minimal faithful left A-module if deletion of any direct summand of U leaves non-faithful left A-module. A ring A is said to be a QF-3 ring if it has a unique minimal faithful left A-module.

H. Tachikawa [3] has shown that A is a QF-3 ring if and only if there exists a faithful, projective, injective, left A-module; if A is a QF-3 ring, the direct sum of U_{λ} ($\lambda = 1, \dots, m$) is the unique minimal faithful left A-module where U_1, \dots, U_m are a representative set of primitive left ideals which are injective (and projective).

Now our theorem is stated as follows.

Theorem. A ring A is generalized uni-serial if and only if every residue class ring of A is a QF-3 ring.

Proof. Suppose that A is generalized uni-serial. Then every residue class ring of A is generalized uni-serial and hence it is a QF-3 ring. This proves the "only if" part.

Conversely, suppose that every residue class ring of A is a QF-3 ring. It is sufficient, by a theorem of T. Nakayama [4], to show that the residue class ring A/N^2 is generalized uni-serial, where N is the radical of A. Hence we have only to prove the following lemma.

Lemma. Let A be a QF-3 ring such that $N^2=0$ where N is the radical of A. Then A is generalized uni-serial.

2. Proof of the lemma. As is well known, we have a direct-sum decomposition of A into indecomposable left [right] ideals:

A Generalization of Morita's Theorem

$$A = \sum_{\kappa=1}^{n} \sum_{i=1}^{f(\kappa)} A e_{\kappa,i} = \sum_{\kappa=1}^{n} \sum_{i=1}^{f(\kappa)} e_{\kappa,i} A,$$

where $e_{\kappa,i}$ ($\kappa = 1, \dots, n$; $i = 1, \dots, f(\kappa)$) are mutually orthogonal idempotents such that $Ae_{\kappa,i} \cong Ae_{\kappa,1} = Ae_{\kappa}$ for $i = 1, \dots, f(\kappa)$, and $Ae_{\kappa,i} \not\equiv Ae_{\lambda,j}$ if $\kappa \neq \lambda$.

Since A is a QF-3 ring, A has a unique minimal faithful, projective, injective, left A-module $U = \sum_{\lambda \in \Pi} Ae_{\lambda}$, where Ae_{λ} ranges over all indecomposable, injective, left ideals in A. Here, by a theorem of [5], $Ae_{\lambda}(\lambda \in \Pi)$ has a unique simple subideal; $S(Ae_{\lambda})^{*} \cong Ae_{\varphi(\lambda)}/Ne_{\varphi(\lambda)}$, and $\varphi(\lambda) = \varphi(\kappa)$ if and only if $\lambda = \kappa$ for $\lambda, \kappa \in \Pi$.

Furthermore we want to show that if $\mu \notin \Pi$ then Ae_{μ} is a simple left ideal. For any non-zero element xe_{μ} of Ae_{μ} , there exists an element $\sum_{\lambda \in \Pi} a_{\lambda}e_{\lambda}$ in U such that $xe_{\mu}(\sum a_{\lambda}e_{\lambda}) \neq 0$ because U is faithful. Hence, from the assumption that $N^2 = 0$ and the fact that $e_{\mu}(\sum a_{\lambda}e_{\lambda}) \in N$, it follows that $xe_{\mu} \notin N$, and so Ae_{μ} is a simple left ideal. Consequently we see that A is a left generalized uni-serial ring.

Next we shall show that A is a right generalized uni-serial ring. To prove this, assume that $e_{\nu}N(\pm 0)$ is decomposed into simple constituents:

$$e_{\nu}N = e_{\nu}a_1e_{\kappa_1}A \oplus e_{\nu}a_2e_{\kappa_2}A \oplus \cdots \oplus e_{\nu}a_te_{\kappa_t}A \quad (t \geq 2).$$

In this case, since $Ne_{\kappa_i} \simeq Ae_{\nu}/Ne_{\nu}$ for all *i*, we have $\kappa_1 = \kappa_2 = \cdots = \kappa_t$ $(=\varphi^{-1}(\nu))$. We put $\kappa_1 = \kappa$.

We now construct the interlacing module $\mathfrak{M} = Ae_{\kappa}\alpha_1 \smile Ae_{\kappa}\alpha_2$ with the property that $xe_{\kappa}\alpha_i = 0 \Leftrightarrow xe_{\kappa} = 0$ (i=1,2) and $xe_{\nu}\alpha_1e_{\kappa}\alpha_1 = xe_{\nu}\alpha_2e_{\kappa}\alpha_2$ for every $x \in A$. We shall prove that $S(\mathfrak{M}) \cong Ae_{\nu}/Ne_{\nu}$.

It is obvious that $N\mathfrak{M}$ is contained in $S(\mathfrak{M})$. Conversely let $Ae_{\mu}\xi$ be a simple submodule of \mathfrak{M} which is not contained in $N\mathfrak{M}$. Evidently $\mu = \kappa$ and $e_{\kappa}\xi$ is expressed in the form:

$$e_{\kappa} \varepsilon = e_{\kappa} x e_{\kappa} lpha_1 + e_{\kappa} y e_{\kappa} lpha_2.$$

Then we have either $e_{\kappa}xe_{\kappa}\notin N$ or $e_{\kappa}ye_{\kappa}\notin N$; otherwise we would have $e_{\kappa}\hat{\xi}\in N\mathfrak{M}$. Hence we may assume, without loss of generality, that $e_{\kappa}xe_{\kappa}\notin N$. Since $Ne_{\kappa}\hat{\xi}=0$, we have $Ne_{\kappa}(e_{\kappa}xe_{\kappa})^{-1}e_{\kappa}\hat{\xi}=0$; since $e_{\nu}a_{1}e_{\kappa}\in e_{\nu}N\subseteq N$ we have

$$e_{\nu}a_1e_{\kappa}\alpha_1 = -e_{\nu}a_1e_{\kappa}(e_{\kappa}xe_{\kappa})^{-1}e_{\kappa}ye_{\kappa}\alpha_2.$$

On the other hand, from the construction of \mathfrak{M} we see that $e_{\nu}a_{1}e_{\kappa}\alpha_{1} = e_{\nu}a_{2}e_{\kappa}\alpha_{2}$. Thus we have $e_{\nu}a_{2}e_{\kappa}\alpha_{2} = -e_{\nu}a_{1}e_{\kappa}(e_{\kappa}xe_{\kappa})^{-1}e_{\kappa}ye_{\kappa}\alpha_{2}$ and hence $e_{\nu}a_{2}e_{\kappa} = -e_{\nu}a_{1}e_{\kappa}(e_{\kappa}xe_{\kappa})^{-1}e_{\kappa}ye_{\kappa}$, which contradicts the property that $e_{\nu}a_{1}e_{\kappa}A \sim e_{\nu}a_{2}e_{\kappa}A = 0$. Therefore $S(\mathfrak{M}) = N\mathfrak{M}$ ($= Ne_{\kappa}\alpha_{1} = Ne_{\kappa}\alpha_{2}$), which is isomorphic to Ae_{ν}/Ne_{ν} .

Now Ae_{κ} is not simple since Ne_{κ} contains a non-zero element $e_{\nu}a_{1}e_{\kappa}$.

No. 7]

^{*)} For a left A-module M, we denote the semi-simple part of M by S(M); $S(M) = \{x \mid Nx = 0, x \in M\}$.

Y. KAWADA

As was proved at the beginning of the proof, a primitive left ideal which is not injective is simple. Therefore Ae_{κ} is an injective module with $S(Ae_{\kappa}) \cong Ae_{\nu}/Ne_{\nu}$. Hence there exists a monomorphism $\psi: \mathfrak{M} \to Ae_{\kappa}$, by a theorem of [5]. But the composition length of \mathfrak{M} is three and that of Ae_{κ} is two since Ae_{κ} is injective. This contradicts our situation. Consequently, A is right generalized uni-serial and hence generalized uni-serial. Thus the lemma is completely proved.

References

- K. Morita: Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, 6, no. 150, 83-142 (1958).
- [2] R. M. Thrall: Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc., 64, 173-183 (1948).
- [3] H. Tachikawa: Note on QF-3 rings (to appear).
- [4] T. Nakayama: Note on uni-serial and generalized uni-serial rings, Proc. Imp. Acad., 16, 285-289 (1940).
- [5] K. Morita, Y. Kawada, and H. Tachikawa: On injective modules, Math. Zeitschr., 68, 217-226 (1957).