91. On Zeta-Functions and L-Series of Algebraic Varieties. II

By Makoto Ishida
Mathematical Institute, University of Tokyo
(Comm. by Z. Suetuna, m.J.A., July 12, 1958)

Here I shall give some supplementary results to my previous paper [1].

Let k be a finite field with q elements. Then, for an abelian variety B defined over k, π_{B} denotes the endomorphism of B such that $\pi_{B}(b)=b^{q}$ for all points b on B and M_{l} denotes the l-adic representation of the ring of endomorphisms of B for a (fixed) rational prime l different from the characteristic of k.

1. Let A / V be a Galois (not necessarily unramified) covering defined over k, with group G and of degree n, where A is an abelian variety and V is a normal projective variety (both defined over k); let r be the dimensions of A and V. Then, in this section, we shall explain the behaviors of the zeta-function $Z(u, V)$ of V and the L-series $L(u, \chi, A / V)$ of A / V over k in the circle $|u|<q^{-(r-3 / 2)}$ and $|u|<q^{-(r-1)}$ respectively.

Now let η_{σ} be the automorphism of A induced by an element σ of G and let $\pi=\pi_{A}$. Then $Z(u, V)$ and $L(u, \chi, A / V)$ are given by the following logarithmic derivatives:

$$
d / d u \cdot \log Z(u, V)=\sum_{m=1}^{\infty}\left\{1 / n \cdot \sum_{\sigma \in G} \operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right)\right\} u^{m-1},
$$

$d / d u \cdot \log L(u, \chi, A / V)=\sum_{m=1}^{\infty}\left\{1 / n \cdot \sum_{\sigma \in G} \operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right) \chi(\sigma)\right\} u^{m-1}$.
First we shall calculate $\operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right)$. If we transform the representation M_{\imath} of G (i.e. the restriction of M_{l} to G such that $M_{l}(\sigma)=M_{l}\left(\eta_{\sigma}\right)$) into the following form:
(*)

$$
M_{l} \left\lvert\, G=\left(\begin{array}{ccc}
E_{d_{1}} \times 1 & & 0 \\
& E_{d x} \times F_{x} & \\
0 & & E_{d_{x^{\prime}}} \times F_{x^{\prime}} \\
& \ddots
\end{array}\right)^{1)}\right.
$$

where $1, F_{\chi}, F_{\chi^{\prime}}, \cdots$ are non-equivalent irreducible representations of G with characters $1, \chi, \chi^{\prime}, \cdots$ respectively, then, as $\pi \eta_{\sigma}=\eta_{\sigma} \pi$ for every σ in $G, M_{l}(\pi)$ must be transformed into the following form simultaneously:
where $\left(\pi_{i j}^{(x)}\right)$ is a matrix of degree d_{x} and f_{x} is the degree of F_{x}.

1) In the following, the matrices $E_{d_{1}} \times 1$ and $\left(\pi_{i j}^{(1)}\right) \times E_{f_{1}}$ do not appear if $d_{1}=0$.
(In the above expressions, E_{d} means the unit matrix of degree d.) Hence we have

$$
\operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right)=\Pi_{x} \operatorname{det}\left|\left(\pi_{i j}^{(x)}\right)^{m} \times E_{f_{\chi}}-E_{d_{\chi}} \times F_{\chi}(\sigma)\right| .
$$

For fixed F_{x} and σ, let $\lambda_{1}(\sigma), \cdots, \lambda_{f_{x}}(\sigma)$ be the characteristic roots of $F_{\chi}(\sigma)$; and also let $\pi_{1}^{(x)}, \cdots, \pi_{a_{\chi}}^{(x)}$ be those of $\left(\pi_{i j}^{(x)}\right)$. We note that $\pi_{i}^{(x)}$, $1 \leq i \leq d_{x}$, are of course the characteristic roots of $M_{l}(\pi)$ and so of absolute values $q^{1 / 2}$. Then, by a matrix of the form $P \times Q$ where P, Q are non-singular matrices of degrees d_{χ}, f_{χ}, we can transform $E_{d_{\chi}} \times$ $F_{\chi}(\sigma)$ and $\left(\pi_{i j}^{(x)}\right)^{m} \times E_{f_{\chi}}$ simultaneously into

$$
E_{d \chi} \times\left(\begin{array}{cc}
\lambda_{1}(\sigma) & 0 \\
& \ddots \\
0 & \ddots_{\lambda_{f_{x}}(\sigma)}
\end{array}\right) \text { and }\left(\begin{array}{cc}
\pi_{1}^{(x)^{m}} & 0 \\
& \ddots \\
* & \pi_{d_{\chi}}^{(x) m}
\end{array}\right) \times E_{f_{x}}
$$

respectively. So we have

$$
\begin{aligned}
& \operatorname{det} \mid\left.\left(\pi_{i j}^{(x)}\right)^{m} \times E_{f_{\chi}}-E_{d x} \times F_{\chi}(\sigma) \mid=\Pi_{i=1}^{d_{\chi}} \Pi_{j=1}^{f}\left(\pi_{i}^{(x)}\right)^{m}-\lambda_{j}(\sigma)\right) \\
&=Q_{\chi}^{m}-\sum_{i}\left(Q_{\chi} \pi_{i}^{(x)-1}\right)^{m} \chi(\sigma)+\sum_{i \neq j}\left(Q_{\chi} \pi_{i}^{(x)^{-1}} \pi_{j}^{\left.\left.(x)^{-1}\right)\right)^{m} \chi(\sigma)^{2}}\right. \\
& \quad+\sum_{i}\left(Q_{\chi} \pi_{i}^{(x)^{-2}}\right)^{m} \cdot 1 / 2 \cdot\left\{\chi(\sigma)^{2}-\chi\left(\sigma^{2}\right)\right\}+O\left(q^{m\left(f_{\chi} d_{\chi}-3\right) / 2}\right),
\end{aligned}
$$

where $Q_{x}=\operatorname{det}\left|\left(\pi_{i j}^{(x)}\right) \times E_{f_{x}}\right|=\left(\pi_{1}^{(x)} \cdots \pi_{a_{x}}^{(x)}\right)^{f_{x}}$.
Therefore we have

$$
\begin{aligned}
& \operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right)=q^{m r}-\sum_{x} \sum_{i}\left(q^{r} \pi_{i}^{(x)-1}\right)^{m} \chi(\sigma) \\
& \quad+\sum_{x} \sum_{i \neq j}\left(q^{r} \pi_{i}^{(x)-1} \pi_{j}^{(x)-1}\right)^{m} \chi(\sigma)^{2}+\sum_{x} \sum_{i i}\left(q^{r} \pi_{i}^{(x)^{-2}}\right)^{m} \cdot 1 / 2 \cdot\left\{\chi(\sigma)^{2}-\chi\left(\sigma^{2}\right)\right\} \\
& \quad+\sum_{x, x^{\prime}: \times \neq x^{\prime}} \sum_{i, j}\left(q^{r} \pi_{i}^{(x)^{-1}} \pi_{j}^{\left(x^{\prime}\right)^{-1}}\right)^{m} \chi(\sigma) \chi^{\prime}(\sigma)+O\left(q^{m(r-3 / 2)}\right) .
\end{aligned}
$$

Here we remark that, as the traces of the l-adic representations are rational numbers, the character of $M_{l} \mid G$ is rational; and so if χ appears in the character of $M_{l} \mid G$, then $\bar{\chi}$ also appears in it, where $\bar{\chi}(\sigma)=\chi\left(\sigma^{-1}\right)$. Moreover, by the expressions (*) and (**), it is easily verified that the set $\left\{\pi_{1}^{(x)}, \cdots, \pi_{a_{x}}^{(x)}\right\}=\left\{q \bar{\pi}_{1}^{(x)^{-1}}, \cdots, q \bar{\pi}_{a_{x}}^{(x)-1}\right\}$ is identical with the set $\left\{q \pi_{1}^{(\overline{\bar{x}})^{-1}}, \cdots, q \pi_{d_{\bar{x}}}^{(\overline{\bar{x}})^{-1}}\right\}$ completely.

Before stating the main results, we shall give three lemmas; except the last one, they are entirely of group-theoretical nature.

Lemma 1. Let H be a finite group of order h and F_{x} an irreducible representation of H with character χ and of degree f. Then, for any irreducible character χ^{\prime} of H, we have

$$
\sum_{\tau \in B} \chi^{\prime}\left(\tau^{-1}\right) F_{\chi}(\tau)=\left\{\begin{array}{l}
h / f \cdot E_{f}, \quad \text { if } \chi=\chi^{\prime} \\
0, \quad \text { if } \chi \neq \chi^{\prime}
\end{array}\right.
$$

Proof. If we put $M_{x^{\prime}}=\sum_{\tau \in H} \chi^{\prime}\left(\tau^{-1}\right) F_{x}(\tau)$, we have $F_{x}(\sigma) M_{x^{\prime}}=$ $M_{x^{\prime}} F_{\mathrm{x}}(\sigma)$ for every σ in H. Therefore, by Schur's lemma, we have $M_{x^{\prime}}=c \cdot E_{f}$ and so $f \cdot c=\operatorname{Tr} M_{x^{\prime}}=\sum_{\tau \in H} \chi^{\prime}\left(\tau^{-1}\right) \chi(\tau)$. Then our assertion is clear.

Lemma 2. Let H be a finite group of order h and χ an irreducible character of H. Then we have $\sum_{\tau \in H}\left\{\chi(\tau)^{2}-\chi\left(\tau^{2}\right)\right\}=0$.

Proof. Let $F: \tau \rightarrow F(\tau)=\left(a_{i j}(\tau)\right)$ be the representation of H with character χ. Then $F^{*}: \tau \rightarrow F^{*}(\tau)=\left(a_{i j}^{*}(\tau)\right)={ }^{t} F\left(\tau^{-1}\right)=\left(a_{j i}\left(\tau^{-1}\right)\right)$ is also
an irreducible representation of H and we have $\chi\left(\tau^{2}\right)=\sum_{i} a_{i i}\left(\tau^{2}\right)$ $=\sum_{i, j} a_{i j}(\tau) a_{j i}(\tau)=\sum_{i, j} a_{i j}(\tau) a_{i j}^{*}\left(\tau^{-1}\right)$. Hence, by Schur [3], we have

$$
\sum_{\tau \in H} \chi\left(\tau^{2}\right)=\left\{\begin{array}{l}
0, \text { if } F \text { and } F^{*} \text { are not equivalent, } \\
h, \text { if } F \text { and } F^{*} \text { are equivalent. }
\end{array}\right.
$$

On the other hand, if χ^{*} is the character of F^{*}, we have $\sum_{\tau} \chi(\tau)^{2}$ $=\sum_{\tau} \chi(\tau) \chi^{*}\left(\tau^{-1}\right)$ and so

$$
\sum_{\tau \in H} \chi(\tau)^{2}=\left\{\begin{array}{l}
0, \text { if } F \text { and } F^{*} \text { are not equivalent, } \\
h, \text { if } F \text { and } F^{*} \text { are equivalent. }
\end{array}\right.
$$

Lemma 3. The Albanese variety $A(V)$ of V is isogenous to $\rho(A)$, where $\rho=\sum_{\sigma \in G} \eta_{\sigma}$, and $M_{l}\left(\pi_{A(V)}\right)$ is equivalent to ($\left.\pi_{i j}^{(1)}\right)$ in (**).

Proof. The first assertion is proved similarly as in the proof of Theorem 3 in Ishida [1]. From (*) we have, by Lemma 1,

$$
M_{l}(\rho)=M_{l}\left(\sum_{\sigma} \eta_{\sigma}\right)=\left(\begin{array}{cc}
n \cdot E_{d_{1}} & 0 \\
0 & 0
\end{array}\right),
$$

and so $M_{l}\left(\pi_{\rho(A)}\right)\left(n \cdot E_{d_{1}} 0\right)=\left(n \cdot E_{d_{1}} 0\right) M_{l}\left(\pi_{A}\right)$. Hence $M_{l}\left(\pi_{\rho(A)}\right)$ is equivalent to $\left(\pi_{i j}^{(1)}\right)$ and the second assertion follows from the first.

Theorem 1. Let $P(u)=\Pi_{i=1}^{2 g}\left(1-q^{r-1} \pi_{i}^{*} u\right),{ }^{2)}$ where $\pi_{1}^{*}, \cdots, \pi_{2 \rho}^{*}$ are the characteristic roots of $M_{l}\left(\pi_{A(V)}\right)$ and g is the dimension of $A(V)$; let d_{x} be the multiplicity of χ in the character of $M_{l} \mid G$. Then

$$
Z(u, V) \cdot\left(1-q^{r} u\right) / P(u)
$$

has $\sum_{x: x=\bar{x}} 1 / 2 \cdot d_{x}\left(d_{x}-1\right)+\sum_{x, \bar{x}: x \neq \bar{x}} d_{x} d_{\bar{x}}$ poles on the circle $|u|=q^{-(r-1)}$ and, except them, it has neither zero nor pole in the circle $|u|<q^{-(r-3 / 2)}$.

Proof. From the expressions of det $M_{l}\left(\pi^{m}-\eta_{\sigma}\right)$, using the orthogonal relation of group-characters and Lemma 2, we have

$$
\begin{aligned}
& 1 / n \cdot \sum_{\sigma \in G} \operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right)=q^{m r}-\sum_{i=1}^{d_{1}}\left(q^{r} \pi_{i}^{(1)^{-1}}\right)^{m} \\
& +\sum_{x: x=\bar{x}} \sum_{i \neq j}\left(q^{r} \pi_{i}^{(x)^{-1}} \pi_{j}^{(x)^{-1}}\right)^{m}+\sum_{x, \overline{\mathrm{x}}: x \neq \bar{x}} \sum_{i, j}\left(q^{r} \pi_{i}^{(x)^{-1}} \pi_{j}^{(\bar{x})^{-1}}\right)^{m} \\
& \quad+O\left(q^{m(r-3 / 2)}\right) .
\end{aligned}
$$

Then the above remarks and Lemma 3 show that the set $\left\{\pi_{1}^{*}, \cdots\right.$, $\left.\pi_{2 g}^{*}\right\}$ is identical with the set $\left\{\pi_{1}^{(1)}, \cdots, \pi_{a_{1}}^{(1)}\right\}=\left\{q \pi_{1}^{(1)^{-1}}, \cdots, q \pi_{a_{1}}^{(1)^{-1}}\right\}$ completely and $2 g=d_{1}$. Therefore we have
$d / d u \cdot \log Z(u, V)+d / d u \cdot \log \left(1-q^{r} u\right)-d / d u \cdot \log P(u)$

$$
=\sum_{m=1}^{\infty}\left\{\sum_{x: x-\bar{x}} \sum_{i \neq j}+\sum_{x, \bar{x}: x \neq \bar{x}} \sum_{i, j}+C_{m} q^{m(r-3 / 2)}\right\} u^{m-1},
$$

where C_{m} is a constant bounded in absolute value by a fixed constant C. Then all the assertions are easily verified.

Remark. In the case where $g \geq 1$ or G is abelian and, moreover, in many other cases, we can show that $u=q^{-(r-1)}$ is a pole of $Z(u, V)$. $\left(1-q^{r} u\right) / P(u)$ (on the circle $\left.|u|=q^{-(r-1)}\right)$.

Corollary. Let $N\left(A, k_{m}\right)$ and $N\left(V, k_{m}\right)$ be the numbers of rational points of A and V over k_{m}, the (unique) extension over k of degree m. Then V is also an abelian variety over k if and only if we have

$$
N\left(A, k_{m}\right)-N\left(V, k_{m}\right)=O\left(q^{m(r-1)}\right)
$$

for all $m \geq 1$.
2) If $d_{1}($ or $d x)=0$, we put, in the following, $P(u)\left(\right.$ or $\left.P_{x}(u)\right)=1$.

Proof. Clearly $N\left(A, k_{m}\right)-N\left(V, k_{n}\right)=O\left(q^{m(r-1)}\right)$ is equivalent to the fact that $Z(u, A) / Z(u, V)$ has neither zero nor pole in the circle $|u|<q^{-(r-1)}$ and also that $d_{1}=2 g=2 r$ i.e. the degree of M_{l}. This equality holds if and only if $M_{l} \mid G=E_{2 r}$, i.e. all $\eta_{\sigma}=1$. And this is clearly a necessary and sufficient condition for V to be an abelian variety over k.

Theorem 2. Let $P_{x}(u)=\Pi_{i=1}^{d_{x}}\left(1-q^{r-1} \pi_{i}^{(x)} u\right)$, where $\pi_{1}^{(x)}, \cdots, \pi_{a_{x}}^{(x)}$ are the characteristic roots of $\left(\pi_{i j}^{(x)}\right)$ and d_{x} is the multiplicity of χ in the character of $M_{l} \mid G$. Then, for $\chi \neq 1$,

$$
L(u, \chi, A / V) / P_{\chi}(u)
$$

has neither zero nor pole in the circle $|u|<q^{-(r-1)}$.
Proof. Similarly as in the proof of the preceding theorem, we have

$$
\begin{aligned}
& 1 / n \cdot \sum_{\sigma \in G} \operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right) \chi(\sigma) \\
& \quad=-\sum_{i=1}^{d_{x}}\left(q^{r} \pi_{i}^{(\bar{x})^{-1}}\right)^{m}+O\left(q^{m(r-1)}\right)=-\sum_{i=1}^{d_{X}}\left(q^{r-1} \pi_{i}^{(x)}\right)^{m}+O\left(q^{m(r-1)}\right)
\end{aligned}
$$

and so
$d / d u \cdot \log L(u, \chi, A / V)-d / d u \cdot \log P_{x}(u)=\sum_{m=1}^{\infty} C_{m}^{(x)} q^{m(r-1)} u^{m-1}$, where $C_{m}^{(x)}$ is a constant bounded in absolute value by a fixed constant $C^{(x)}$. Then all the assertions are easily verified.
2. Let U / V be a Galois (not necessarily unramified) covering, defined over k, with group G and of degree n, where U, V are non-singular projective varieties (both defined over k) of dimension r. Then, from the preceding theorems, we can give the following conjectural statement on the behaviors of the L-series $L(u, \chi, U / V)$ of U / V over k in the circle $|u|<q^{-(r-1)}$, which is equivalent to that given by Lang. (As for the definition of L-series in general cases, see Lang [2].) Let $A(U)$ be the Albanese variety of U. As k is a finite field, we may assume that $A(U)$ and the canonical map: $U \rightarrow A(U)$ are defined over k. Then every element σ in G induces an automorphism η_{σ}, defined over k, of $A(U)$ and $\pi_{A(U)} \eta_{\sigma}=\eta_{\sigma} \pi_{A(U)}$ for every σ in G; and so we have similarly as in 1 :

$$
M_{l} \left\lvert\, G=\left(\begin{array}{cc}
E_{d_{1}} \times 1 & 0 \\
E_{d_{x}} \times F_{\mathrm{x}} & \\
& E_{d x^{\prime}} \times F_{\boldsymbol{x}^{\prime}} \\
0 & \ddots
\end{array}\right)\right., \quad M_{l}\left(\pi_{A(U)}\right)=\left(\begin{array}{cc}
\left(\pi_{i j}^{(1)} \times E_{f_{1}}\right. & 0 \\
\left(\pi_{i j}^{(x)}\right) \times E_{f_{x}} \\
& \left(\pi_{i j}^{\left(x^{\prime}\right)}\right) \times E_{f_{f^{\prime}}} \\
0 & \ddots
\end{array}\right),
$$

where $1, F_{x}, F_{x^{\prime}}^{\prime}, \cdots$ are non-equivalent irreducible representations of G with characters $1, \chi, \chi^{\prime}, \cdots$ and of degrees $f_{1}=1, f_{\chi}, f_{\chi^{\prime}}, \cdots$. We put $P_{\chi}(u)=\Pi_{i=1}^{d_{x}}\left(1--q^{r-1} \pi_{i}^{(x)} u\right)$, where $\pi_{1}^{(x)}, \cdots, \pi_{a_{x}}^{(x)}$ are the characteristic roots of $\left(\pi_{i j}^{(x)}\right)$ and $a_{x}=1$ if $\chi=1$ and $a_{x}=0$ if $\chi \neq 1$. Then, for every χ (not excluding $\chi=1$),

$$
L(u, \chi, U / V) \cdot\left(1-q^{r} u\right)^{a} x / P_{\mathrm{x}}(u)
$$

has neither zero nor pole in the circle $|u|<q^{-(r-1)}$. As, in this general
case, we can also prove that $\rho(A(U))$ is isogenous to the Albanese variety $A(V)$ of V where $\rho=\sum_{\sigma \in G} \eta_{\sigma}$, this conjecture complements those of Weil and Lang.

In the case where $U=\Gamma, V=\Gamma_{0}$ are non-singular complete curves defined over k, this conjecture is easily verified. In fact, by Weil [4, 5], we have

$$
L\left(u, \chi, \Gamma / \Gamma_{0}\right)=\exp \left(-\int_{0}^{u} \Phi_{x}(u) \cdot d u / u\right)(1-u)^{a x}(1-q u)^{a_{x}},
$$

where $\Phi_{\chi}(u)=1 / f_{\chi} \cdot \sum_{m=1}^{\infty} \operatorname{Tr} M_{l}\left(\rho_{\chi} \pi^{m}\right) u^{m}, \rho_{\chi}=f_{\chi} / n \cdot \sum_{\sigma \in G} \chi\left(\sigma^{-1}\right) \eta_{\sigma}$ and $\pi=$ $\pi_{A(\Gamma)}$. Then by Lemma 1 ,

$$
\begin{aligned}
& M_{l}\left(\rho_{\chi} \pi^{m}\right)=f_{\chi} / n \cdot M_{l}\left(\sum_{\sigma} \chi\left(\sigma^{-1}\right) \eta_{\sigma}\right) M_{l}\left(\pi^{m}\right) \\
& \quad=f_{\chi} / n \cdot\left(\begin{array}{c}
0 \\
n / f_{\chi} \cdot E_{d_{\chi}} \times E_{f_{\chi}} \\
0
\end{array}\right) \cdot M_{l}\left(\pi^{m}\right)=\left(\begin{array}{c}
0 \\
\left(\pi_{i j}^{(x)}\right)^{m} \times E_{f_{\chi}} \\
0
\end{array}\right)^{3)} ;
\end{aligned}
$$

and so we have $\operatorname{Tr} M_{l}\left(\rho_{\chi} \pi^{m}\right)=f_{x} \sum_{i=1}^{d_{\chi}} \pi_{i}^{(x) m}$ and

$$
\Phi_{\chi}(u)=\sum_{m=1}^{\infty}\left(\sum_{i} \pi_{i}^{\left.(\alpha)^{m}\right)} u^{m}=\sum_{i=1}^{d_{x}} \pi_{i}^{(\alpha)} u /\left(1-\pi_{i}^{(x)} u\right) .\right.
$$

Therefore we have

$$
\begin{gathered}
L\left(, u \chi, \Gamma / \Gamma_{0}\right)=\exp \left(\sum_{i} \log \left(1-\pi_{i}^{(x)} u\right)\right) /(1-u)^{a_{x}}(1-q u)^{a_{x}} \\
=\prod_{i=1}^{d_{x}}\left(1-\pi_{i}^{(x)} u\right) /(1-u)^{a_{x}}(1-q u)^{a_{x}} .
\end{gathered}
$$

Since $Z(u, \Gamma)=\operatorname{det}\left(E_{2 g}-M_{l}(\pi) u\right) /(1-u)(1-q u)$, this result gives an algebraic-geometrical explanation of the well-known group-theoretical decomposition of the zeta-function $Z(u, \Gamma)$:

$$
Z(u, \Gamma)=Z\left(u, \Gamma_{0}\right) \Pi_{\chi \neq 1} L\left(u, \chi, \Gamma / \Gamma_{0}\right)^{f_{x}} .
$$

Correction. In Theorem 2 of the previous paper [1], the functional equations of L-series $L(u, \chi, A / V)$ with $\chi \neq 1$ should be corrected as follows:

$$
L\left(1 / q^{r} u, \chi, A / V\right)=(-1)^{e(x)} W(\chi) u^{e(x)} L(u, \bar{\chi}, A / V),
$$

where $W(\chi)$ is a constant with $|W(\chi)|=q^{r e(x) / 2}$ and $W(\bar{\chi})=\overline{W(\chi)}$.

References

[1] M. Ishida: On zeta-functions and L-series of algebraic varieties, Proc. Japan Acad., 34, 1-5 (1958).
[2] S. Lang: Sur les séries L d'une variété algébrique, Bull. Soc. Math. France, 84, 385-407 (1956).
[3] J. Schur: Die algebraischen Grundlagen der Darstellungstheorie der Gruppen, Zürich (1936).
[4] A. Weil: Sur les Courbes Algébriques et les Variétés Qui s'én Déduisent, Paris (1948).
[5] -: Variétés Abéliennes et Courbes Algébriques, Paris (1948).
3) Here $d x$ may be 0 . Then the matrix on the right side means 0 -matrix.

