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(Comm. by Z. SUETUNA, M.J.A., July 12, 1958)

Here I shall give some supplementary results to my previous
paper 1.

Let k be a finite field with q elements. Then, for an abelian
variety B defined over k, r, denotes the endomorphism of B such that
rB(b)--b for all points b on B and Mt denotes the/-adic representation
of the ring of endomorphisms of B for a (fixed) rational prime different
from the characteristic of k.

1. Let A/V be a Galois (not necessarily unramified) covering
defined over k, with group G and of degree n, where A is an abelian
variety and V is a normal projective variety (both defined over k);
let r be the dimensions of A and V. Then, in this section, we shall
explain the behaviors of the zeta-function Z(u, V) of V and the L-series
L(u, , A/V) of A/V over k in the circle luI<q--/ and u]<q-(r-)

respectively.
Now let vo be the automorphism of A induced by an element

of G and let =. Then Z(u, V) and L(u, , A/V) are given by the
following logarithmic derivatives:

d/du. log Z(u, V)== {1/n. det M(’--o)}u"-,
d/du.log L(u, , A/V)=:{1/n.oa det M(--w)X(a)}u-.
First we shall calculate det M(’--vo). If we transform the

representation Mt of G (i.e. the restriction of Mt to G such that
Mt(a)=Mt(w)) into the following form:

E X 1 0

E,x, x F,
0 ".

where 1, Fx, Fx,,... are non-equivalent irreducible representations of
G with characters 1, , Z’,... respectively, then, as-for every
a in G, M,(v) must be transformed into the following form simultane-
ously:

(.,, X
0

where (.,,- is a matrix of degree gx and fx is the degree of
(1)1) I the ollowig, the matrieeB x i ad ; ,xi do ot appear i g=O.



396 M. ISHIDA [Vol. 34,

(In the above expressions, E means the unit matrix of degree d.)
Hence we have

det M(r--o)-II det r’, X Exx-Ex X Fx(a) !"
For fixed F and , let @),..., &() be the characteristic roots of
F(a); and also let r(1, -(x be those of v,,, ..., x t_c We note that r
l<_id, are of course the characteristic roots of M(r)and so of
absolute values q/. Then, by a matrix of the form PQ where P,
Q are non-singular matrices of degrees d, f, we can transform Ex
F(a) and -’"(.,,-, E simultaneously into

Exx ".. and ". xE/x
o $

dx
respectively. So we have

"--’-i 1-’- -.: 1\ j(O’))
--Q ,. (Qrx-))(a)/.,+.. x

+ 1/2.
where Qx-det (r.. EI-(rz3 dX

Therefore we have
det M(r-vo) q--]x,- i4:j (qrr(X)-xTrx)-l)mX(a)2-xi (qrrx)-2)m" 1/2. [X(a)2-

+ +
Here we remark that, as the traces of the /-adic representations

are rational numbers, the character of M,[G is rational; and so if
appears in the character of M]G, then also appears in it, where
(a)--(a-1). Moreover, by the expressions (.) and (**), it is easily
verified that the set r() _()_{qX- ,;.(x)-’ is identical with

the set {qr)-1 ’()- completely.
Before stating the main results, we shall give three lemmas;

except the last one, they are entirely of group-theoretical nature.
Lemma 1. Let H be a finite group of order h and Fx an ir-

reducible representation of H with character and of degree f.
Then, for any irreducible character %’ of H, we have

Proof. If we put Mx,--:g’(--)Nx(-), we have
Mx,F() for every in H. Therefore, by Sehur’s lemma, we have
Mx,--e.N and so f.e- TrMx,--, %’(’-):Z(’). Then our assertion
is elear.

Lemma 2. Let H be a finite group of order h and ) an ir-
reducible character of H. Then we have [)(r)--)d(r)}--0.

Proof. Let F" r-->F(r)--(a.(r)) be the representation of H with
character ). Then F*’r-->F*(r)--(a(r))--tF(r-)--(a(r-)) is also
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an irreducible representation of H and we have )(r2)--32,i a,(r2)
--,i,at(-)a()-3-2,,jaj()a(-l). Hence, by Schur 3, we have

en (C)--[ 0, if F and F* are not equivalent,
h, if F and F* are equivalent.

0n the other hand, if * is the character of F*, we have
()*(r-) and so

0, if F and F* are not equivalent,e(r)- h, if F and F* are equivalent.
Lemma . The Albanese variety A( V) of V is isogenous to p(A),

where P--e, and M()) is equivalent to ( in (**)
Proof. The first assertion is proved similarly as in the proof of

Theorem 3 in Ishida 1. From (.) we have, by Lemma 1,

M(o)_M()_(n;E 0 },0
and so Mt(())(n.E O)--(n. E, 0)Mt(). Hence Mt(()) is equiva-
lent to ( and the second assertion follows from the first.3

Theorem 1. Let P(u)--H= (1--q-$u), where ,..., are
the characteristic roots of Mt((,)) and g is the dimension of A(V);
let dx be the multiplicity of in the character of M] G. Then

Z(u, Y).(1--qu)/P(u)
has :=1/2.d(d--l)+,:xdxd poles on the circle u __q-(r-)
and, except them, it has neither zero nor pole in the circle u

Proof. From the expressions of det M(’--v), using the orthogo-
nal relation of group-characters and Lemma 2, we have

r(1)-11In ea det M( v)--q"-- (q
(q +,:,

Then the above remarks and Lemma 3 show that the set {,...,
} is identical with the set {i), v,,)} {qi)-, q)-} completely
and 2g-d. Therefore we have

d/du. log Z(u, V)+d/du. log (1--qu)--d/du log P(u)
=%=, {:x:+.++,:x, ,++C:q(-a/’}u-,

where C, is a constant bounded in absolute value by a fixed constant
C. Then all the assertions are easily verified.

Remark. In the case where gl or G is abelian and, moreover,
in many other cases, we can show that u=q-(r-*> is a pole of Z(u, V).
(1--qu)/P(u) (on the circle lu--q-("-*>).

Corollary. Let N(A, k) and N( V, k) be the numbers of rational
points of A and V over k, the (unique) extension over k of degree
m. Then V is also an abelian variety over k if and only if we have

N(A, k)--N(V, k,)--O(q:(r-*>)
for all m 1.

2) If dl (or dx)=0, we put, in the following, P(u) (or Px(u))=l.
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Proof. Clearly N(A, k)--N(V, k,)=O(q(-)) is equivalent to the
fact that Z(u,A)/Z(u, V) has neither zero nor pole in the circle
ui<q-(-) and also that d-2g-2r i.e. the degree of M. This
equality holds if and only if MiG--E., i.e. all v--l. And this is
clearly a necessary and sufficient condition for V to be an abelian
variety over k.

Theorem 2. Let Pz(u) ax q,.-- (1-- -Xu), where , ,,ax are
the characteristic roots of ((x) and dx is the multiplicity of in
the character of M G. Then, for 1,

L(u, X, A V)/Px(u)
has neither zero nor pole in the circle [u[<q-(-).

Proof. Similarly as in the proof of the preceding theorem, we
have

1/n. det (--v)x(a)
+ +

and so
(X) re(r- 1)Urn-d/du. log L(u, , AV)--d/du. log Px(u)--= C q

where Cx) is a constant bounded in absolute value by a fixed constant
C(x). Then all the assertions are easily verified.

2. Let U/V be a Galois (not necessarily unramified)covering,
defined over k, with group G and of degree n, where U, V are non-singular
projective varieties (both defined over k)of dimension r. Then, from
the preceding theorems, we can give the following conjectural state-
ment on the behaviors of the L-series L(u, , U/V) of U/V over k
in the circle ]ul<q--), which is equivalent to that given by Lang.
(As for the definition of L-series in general cases, see Lang 2.)
Let A(U) be the Albanese variety of U. As k is a finite field, we
may assume that A(U) and the canonical map: UA(U) are defined
over k. Then every element a in G induces an automorphism v,
defined over k, of A(U) and ()=,) for every a in G; and so
we have similarly as in 1"

M, G= Ex x Fx
M,(a()) (x,)

0 "- 0 ".

where 1, Fx, ,,... are non-equivalent irreducible representations of
G with characters 1, , ’,... and of degrees f--l, fx, fx,,’" We
put Px(u) x __qH. (1 u), where x, "x are the characteristic
roots of -,,e-(x)) and ax=l if -1 and ax=0 if 1. Then, for every

X (not excluding -1),
L(u, x, U V).

has neither zero nor pole in the circle lul<q-(r-). As, in this general
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case, we can also prove that p(A(U)) is isogenous to the Albanese
variety A(V) of V where p--,oe vo, this conjecture complements
those of Well and Lang.

In the case where U--F, V=Fo are non-singular complete curves
defined over k, this conjecture is easily verified. In fact, by Well [4,
5, we have

L(u,x,F/lo)--exp(--f(u).du/u) (1--u)(1--qu),
where (u)-- 1/f.: Tr M(g)u, g=f/n. X(a-1) and --(r). Then by Lemma 1,

Mt(p")=fx/n. Mt(X(a-’))M()

(X)f/n. n/A.ExE M()- (, xE
0 0

and so we have Tr Mt(gv)=f x and

(u)-: ()u ?u/(1-?u).
Therefore we have

L(,u , F/Fo)--exp( log (1--x)U))/(1--u)ax(1--qu)ax

=,_ (-?u)/(-u)(-qu)%
Since Z(u,F)=det(E,--Mt()u)/(1--u)(1--qu), this result gives

an algebraic-geometrical explanation of the well-known group-theo-
retical decomposition of the zeta-function Z(u, F):

Z(u, I)-Z(u, o) L(u, x, /o).
Correction. In Theorem 2 of the previous paper [1, the func-

tional equations of L-series L(u, ), A V) with : 1 should be corrected
as follows:

L(1/qu, %, A/V)--(--1)) W()u)L(u, -, A/V),
where W(%) is a constant with W(x)l=q)/" and W()= W()).
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3) Here d may be 0. Then the matrix on the right side means 0-matrix.


