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91. On Zeta-Functions and L-Series of Algebraic Varieties. II

By Makoto ISHIDA
Mathematical Institute, University of Tokyo
(Comm. by Z. SUETUNA, M.J.A., July 12, 1958)

Here I shall give some supplementary results to my previous
paper [17.

Let k& be a finite field with q elements. Then, for an abelian
variety B defined over k, 7, denotes the endomorphism of B such that
m(b)=0¢ for all points b on B and M, denotes the [-adic representation
of the ring of endomorphisms of B for a (fixed) rational prime [ different
from the characteristic of k.

1. Let A/V be a Galois (not necessarily unramified) covering
defined over k, with group G and of degree n, where A is an abelian
variety and V is a normal projective variety (both defined over k);
let » be the dimensions of A and V. Then, in this section, we shall
explain the behaviors of the zeta-function Z(u, V') of V and the L-series
L(u,x, A/V) of A/V over k in the circle |u|<q " *® and |u|<q """
respectively.

Now let 7, be the automorphism of A induced by an element o
of G and let m=m,. Then Z(u, V) and L(u, x, A/V) are given by the
following logarithmic derivatives:

d/du-log Z(u, V)=10_ 1 {1/n-Xece det M (m" —no)}u™"",
dfdu-log L(u, x, A/ V)= {1/n-Sece det M(m™ —n5)x(o)}u™".

First we shall calculate det M, (7w™—7%,). If we transform the
representation M, of G (i.e. the restriction of M, to G such that
M,(¢)=M((7,)) into the following form:

E, X1 0 b
E, X Fy
(*) MlG:' 0 de/xFX’ 3

where 1, F,, Fy,--- are non-equivalent irreducible representations of
G with characters 1, x, x’,- - - respectively, then, as m,=»,m for every

o in G, M(m) must be transformed into the following form simultane-
ously:
(mF)X B, 0 b
(mP) X Ef,
(+) Mim)= ’ (w%-");x E; |
0 "

where (w$’) is a matrix of degree d, and fx is the degree of F.

1) In the following, the matrices Ey x1 and (a§}) x Ef, do not appear if d;=0.



396 M. ISHIDA [Vol. 34,

(In the above expressions, E, means the unit matrix of degree d.)
Hence we have
det M (m™ —no)=IIx det | (m{)" X By, — E,, X Fy(o)|.

For fixed Fy and o, let 21(0), -+, 2s,(0) be the characteristic roots of
Fy(o); and also let ={®,. .., 7% be those of (w{}’). We note that =,
1<i<d,, are of course the characteristic roots of M,(7) and so of
absolute values ¢/%2. Then, by a matrix of the form PXQ where P,
Q are non-singular matrices of degrees d,, fy, we can transform E,, X
Fy(s) and (m{{)" X E, simultaneously into

M) 0 @™ 0
Ed,(><< ) and ( )fox
0 2s(0) x o

respectively. So we have
det | (m$P)" X Ey,— E;, X Fy(o) | =IATLA (7™ — 2,(0))
=Q5 — 30 (@)X (0) + D) QT Y mx (o)
+ 30 (Qur Y™ 1/2- {x (0)* — x (D)} - O(gm 2?2 272),

where Qy=det | (m{P) X Ey, |=(m{®+ - - w$)’%.

Therefore we have

det My(m™—no)=¢""— >3 3% (¢’ )"x ()

+ 30 Sy (@ TN (0) S 3 (@) 12 {x(0)* — x(0%)}

+ 2w e 20,7 (4" W(""l Oy mx (0)x (0) + O™ ).

Here we remark that, as the traces of the l-adic representations
are rational numbers, the character of M,|G is rational; and so if x
appears in the character of M| G, then X also appears in it, where
X(o)=x(s""). Moreover, by the expressions (x) and (xx), it is easily
verified that the set {#=*,- .-, wﬁ,’,‘f}:{q'r_rg’“"‘ cen,qme } is identical with
the set {quﬁ"’ quf,@ '} completely.

Before statmg the main results, we shall give three lemmas;
except the last one, they are entirely of group-theoretical nature.

Lemma 1. Let H be a finite group of order h and Fy an ir-
reducible representation of H with character x and of degree f.
Then, for any irreducible character x' of H, we have

Seem/(r ) Fx(n={ f;’ f lffx :\:‘fxx“x ‘

Proof. If we put My=cax'(r")Fx(r), we have Fylo)My=
My Fy(o) for every o in H. Therefore, by Schur’s lemma, we have
My=c-E, and so f-c=TrMy=>)ecaX (" )x(r). Then our assertion
is clear.

Lemma 2. Let H be a finite group of order h and x an ir-
reducible character of H. Then we have >.cx {x(v)*—x(+*)}=0.

Proof. Let F:7— F(r)=(a;(7)) be the representation of H with
character x. Then F*:r— F*(r)=(a}(r))="F(r"")=(a,(r?)) is also
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an irreducible representation of H and we have x(+*)=33; a;(=?)
=3, @ (T ()= a.,(r)af(+"). Hence, by Schur [3], we have
o_ [0, if F and F'* are not equivalent,
e X(r )_{ h, if F and F* are equivalent.
On the other hand, if x* is the character of F'*, we have 3. x(7)
=>Lx(™x*( ') and so
. [0, if F and F* are not equivalent,
2een X(7) —{ h, if F and F* are equivalent.

Lemma 3. The Albanese variety A(V) of V is isogenous to p(A),
where p=>ocans ond M(m,.,) is equivalent to (ms}) in (xx).

Proof. The first assertion is proved similarly as in the proof of
Theorem 3 in Ishida [1]. From (x) we have, by Lemma 1,

ML(P)ZML(Zoﬂo)z(n.OEdl g >;
and so M(m,,)(n-Ey 0)=(n-E,; 0)M/(mr,). Hence M,(m,,,) is equiva-
lent to (7)) and the second assertlon follows from the first.

Theorem 1. Let P(u)=II;2, (1—q " 'm}u),” where =}, -, s are
the characteristic roots of M(m,.,) and g is the dimension of A(V);
let dy be the multiplicity of x in the character of M,|G. Then

Z(u, V)-(1—q"u)/ P(u)
has >3-z 1/2-dy(dy—1)+ > 7. 143 dudz poles on the circle |u|=q "
and, except them, it has neither zero nor pole in the circle |u|<q =32,

Proof. From the expressions of det M,(7w™—1,), using the orthogo-
nal relation of group-characters and Lemma 2, we have

1/n-Soee det M(m"—n;)=q"" — L, (¢'mid™)"
+ZX X= XZI#] (q'r go! (X)— )"“‘"Zx X KEX Zi J (q W(X)-IW(X) )m
_{_O(Qm(’r 3/2))
Then the above remarks and Lemma 3 show that the set {=f,---,
3} is identical with the set {m{",- - -, m3’} = {qms®™,- S Qe '} completely
and 2g=d,. Therefore we have
d/dw-log Z(u, V)+d/du-log (1—q u)—d/du-log P(u)
=Eﬁ=1 {Zx:x-a‘c Ei*j‘l‘Zx,i:x#i Ei,j—l—cmqm(r—a/m}um_l!
where C,, is a constant bounded in absolute value by a fixed constant
C. Then all the assertions are easily verified.

Remark. In the case where g>1 or G is abelian and, moreover,
in many other cases, we can show that u=¢-“-" is a pole of Z(u,V)-
(1—q"u)/P(u) (on the circle |u|=q “"P).

Corollary. Let N(A,k,) and N(V,k,,) be the numbers of rational
points of A and V over k,, the (unique) extension over k of degree
m. Then V is also an abelian variety over k if and only if we have

N(A, k,)—N(V, k,)=0(@""")
Jor all m>1.

2) If d; (or dx)=0, we put, in the following, P(u) (or Px(u))=1.
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Proof. Clearly N(4,k,)—N(V,k,)=0(g™""") is equivalent to the
fact that Z(w, A)/Z(u,V) has neither zero nor pole in the circle
|u]<g=“-* and also that d,=2¢9=2r i.e. the degree of M, This
equality holds if and only if M,|G=E,, ie. all »,=1. And this is
clearly a necessary and sufficient condition for V to be an abelian
variety over k.

Theorem 2. Let P,(u)=TIL* (1—q " 'm*u), where =, - -, o are
the characteristic roots of (w¥’) and dy is the multiplicity of x in
the character of M,|G. Then, for x =1,

L(u, x, A/ V)] Px(u)
has meither zero nor pole in the circle |u|<q “~P.

Proof. Similarly as in the proof of the preceding theorem, we
have

l/n * ZGEG det M(""m-%)X(ﬂ)

— ;lfl (qrqrg)“)m_{_o(qm(r-n)____ ?-?-(1 (qr—lng))m_{_o(qm(r-l))
and so

d/du-log L(u, x, A/ V)—d/du-log Py(u)=>"n_, Cq™ " Py™"1,
where C{* is a constant bounded in absolute value by a fixed constant
C™®, Then all the assertions are easily verified.

2. Let U/V be a Galois (not necessarily unramified) covering,
defined over &, with group G and of degree n, where U, V are non-singular
projective varieties (both defined over k) of dimension r. Then, from
the preceding theorems, we can give the following conjectural state-
ment on the behaviors of the L-series L(u,x,U/V) of U/V over k
in the circle |u|<qg ", which is equivalent to that given by Lang.
(As for the definition of L-series in general cases, see Lang [2].)
Let A(U) be the Albanese variety of U. As k is a finite field, we
may assume that A(U) and the canonical map: U—~ A(U) are defined
over k. Then every element ¢ in G induces an automorphism 7,
defined over k, of A(U) and m,me=%cm4uy, fOr every ¢ in G; and so
we have similarly as in 1:

E, x1 0 (my X E,, 0
B, XF, (wP) X B,
Ml l G= de/ < Fxl ’ Mz(’TTA<U>) = ('rr%(,)) X Efx’
0 . 0 .
where 1, Fy, Fy,--- are non-equivalent irreducible representations of
G with characters 1, x, x',-++ and of degrees fi=1, fi, fur-++ . We
put Py(w)=TI% (1--q"~'={®u), where ={®,- - -, 7 are the characteristic

roots of (m§) and ax=1 if x=1 and ay=0 if x 1. Then, for every
x (not execluding x=1),

L(u, x, U/ V) (1—qw)**| Py(u)
has meither zero nor pole in the circle |u|<q“~". As, in this general
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case, we can also prove that p(A(U)) is isogenous to the Albanese
variety A(V) of V where p=3,ce¢n, this conjecture complements
those of Weil and Lang.

In the case where U=1", V=1I", are non-singular complete curves
defined over k, this conjecture is easily verified. In fact, by Weil [4,
5], we have

Liu, x, I'/I')=exp |~ ["0(u)-dupu) (1—w)*1—qu)™,

where @(u)=1/fy 3151 Tr Mipxm™)u™, px=Ju/n-> ea x(0™)n, and 7=
T4 Then by Lemma 1,

M (pxm™) =fx/0n M, (36 X (o™ o) M (™) N
0
=fyn- ( n/fy de X Efx )' ML('"'m) = < ('"'%O)m X Efx );
0 0

and so we have Tr M,(p,m™)=fx S =™ and

Qy(w)=3Tn 1, (0w =S0E, wiPuf(1—miu).
Therefore we have

L(;u x, I'[T7)=exp (3, log (1—mu))/(1—u)*(1—qu)*™*
=IL%, (1—m{Pu)/(1—u)"*(1—qu)™,

Since Z(u, I')=det (Ey,— M (m)u)/(1—u)(1—qu), this result gives
an algebraic-geometrical explanation of the well-known group-theo-
retical decomposition of the zeta-function Z(u, I'):

Z(u, I')=Z (U, I' ) Tysy L(u, X, F/Fo)fx-

Correction. In Theorem 2 of the previous paper [1], the funec-

tional equations of L-series L(u,x, A/ V) with x %=1 should be corrected
as follows:

L(1/q"w, x, A/ V)=(=1)*C W (x)u*“L(w, x, A/ V),
where W(x) is a constant with |W(x)|=¢"*"* and W(x)= W(x).
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3) Here dx may be 0. Then the matrix on the right side means 0-matrix.



