91. On Zeta-Functions and L-Series of Algebraic Varieties. II

By Makoto Ishida

Mathematical Institute, University of Tokyo (Comm. by Z. SUETUNA, M.J.A., July 12, 1958)

Here I shall give some supplementary results to my previous paper [1].

Let k be a finite field with q elements. Then, for an abelian variety B defined over k, π_B denotes the endomorphism of B such that $\pi_B(b) = b^q$ for all points b on B and M_l denotes the *l*-adic representation of the ring of endomorphisms of B for a (fixed) rational prime l different from the characteristic of k.

1. Let A/V be a Galois (not necessarily unramified) covering defined over k, with group G and of degree n, where A is an abelian variety and V is a normal projective variety (both defined over k); let r be the dimensions of A and V. Then, in this section, we shall explain the behaviors of the zeta-function Z(u, V) of V and the L-series $L(u, \chi, A/V)$ of A/V over k in the circle $|u| < q^{-(r-3/2)}$ and $|u| < q^{-(r-1)}$ respectively.

Now let η_{σ} be the automorphism of A induced by an element σ of G and let $\pi = \pi_A$. Then Z(u, V) and $L(u, \chi, A/V)$ are given by the following logarithmic derivatives:

 $d/du \cdot \log Z(u, V) = \sum_{m=1}^{\infty} \{1/n \cdot \sum_{\sigma \in G} \det M_l(\pi^m - \eta_\sigma)\} u^{m-1},$ $d/du \cdot \log L(u, \chi, A/V) = \sum_{m=1}^{\infty} \{1/n \cdot \sum_{\sigma \in G} \det M_l(\pi^m - \eta_\sigma)\chi(\sigma)\} u^{m-1}.$

First we shall calculate det $M_i(\pi^m - \eta_\sigma)$. If we transform the representation M_i of G (i.e. the restriction of M_i to G such that $M_i(\sigma) = M_i(\eta_\sigma)$) into the following form:

$$(*) M_{l} | G = \begin{pmatrix} E_{d_{1}} \times 1 & 0 & \\ E_{d_{\chi}} \times F_{\chi} & \\ & E_{d_{\chi'}} \times F_{\chi'} & \\ 0 & \ddots & \end{pmatrix}^{1}$$

where 1, $F_{\chi}, F_{\chi'}, \cdots$ are non-equivalent irreducible representations of G with characters 1, χ, χ', \cdots respectively, then, as $\pi \eta_{\sigma} = \eta_{\sigma} \pi$ for every σ in G, $M_l(\pi)$ must be transformed into the following form simultaneously:

$$(**) M_l(\pi) = \begin{pmatrix} (\pi_{ij}^{(1)}) \times E_{f_1} & 0 \\ (\pi_{ij}^{(X)}) \times E_{f_X} \\ (\pi_{ij}^{(X')}) \times E_{f_{X'}} \\ 0 & \ddots \end{pmatrix},$$

where $(\pi_{ij}^{(\chi)})$ is a matrix of degree d_{χ} and f_{χ} is the degree of F_{χ} .

¹⁾ In the following, the matrices $E_{d_1} \times 1$ and $(\pi_{ij}^{(1)}) \times E_{f_1}$ do not appear if $d_1 = 0$.

(In the above expressions, E_d means the unit matrix of degree d.) Hence we have

$$\det M_{l}(\pi^{m}-\eta_{\sigma})=\Pi_{\chi}\det |(\pi_{ij}^{(\chi)})^{m}\times E_{f_{\chi}}-E_{d_{\chi}}\times F_{\chi}(\sigma)|.$$

For fixed F_{χ} and σ , let $\lambda_1(\sigma), \dots, \lambda_{f_{\chi}}(\sigma)$ be the characteristic roots of $F_{\chi}(\sigma)$; and also let $\pi_1^{(\chi)}, \dots, \pi_{d_{\chi}}^{(\chi)}$ be those of $(\pi_{ij}^{(\chi)})$. We note that $\pi_i^{(\chi)}$, $1 \le i \le d_{\chi}$, are of course the characteristic roots of $M_l(\pi)$ and so of absolute values $q^{1/2}$. Then, by a matrix of the form $P \times Q$ where P, Q are non-singular matrices of degrees d_{χ}, f_{χ} , we can transform $E_{d\chi} \times F_{\chi}(\sigma)$ and $(\pi_{ij}^{(\chi)})^m \times E_{f_{\chi}}$ simultaneously into

$$E_{d\chi} imes egin{pmatrix} \lambda_1(\sigma) & 0 \ dots & dots \ 0 & \lambda_{f\chi}(\sigma) \end{pmatrix} ext{ and } egin{pmatrix} \pi_1^{\langle\chi
angle^{m}} & 0 \ dots & dots \ lpha^{\chi
angle^{m}} \ lpha^{\chi
angle^{m}} & lpha^{\chi
angle^{m}} \ lpha^{\chi
angle^{m}} \end{pmatrix} imes E_{f\chi}$$

respectively. So we have

$$\det |(\pi_{ij}^{(\chi)})^{m} \times E_{f_{\chi}} - E_{d_{\chi}} \times F_{\chi}(\sigma)| = \prod_{i=1}^{d_{\chi}} \prod_{j=1}^{f_{\chi}} (\pi_{i}^{(\chi)^{m}} - \lambda_{j}(\sigma))$$

= $Q_{\chi}^{m} - \sum_{i} (Q_{\chi} \pi_{i}^{(\chi)^{-1}})^{m} \chi(\sigma) + \sum_{i \neq j} (Q_{\chi} \pi_{i}^{(\chi)^{-1}} \pi_{j}^{(\chi)^{-1}})^{m} \chi(\sigma)^{2}$
+ $\sum_{i} (Q_{\chi} \pi_{i}^{(\chi)^{-2}})^{m} \cdot 1/2 \cdot \{\chi(\sigma)^{2} - \chi(\sigma^{2})\} + O(q^{m(f_{\chi}d_{\chi} - 3)/2}),$

where $Q_{\chi} = \det | (\pi_{ij}^{(\chi)}) \times E_{f_{\chi}} | = (\pi_1^{(\chi)} \cdots \pi_{d_{\chi}}^{(\chi)})^{f_{\chi}}.$

Therefore we have

$$\begin{split} &\det M_{i}(\pi^{m} - \eta_{\sigma}) \!=\! q^{mr} \!-\! \sum_{\mathbf{X}} \sum_{i} (q^{r} \pi_{i}^{(\mathbf{X})^{-1}})^{m} \chi(\sigma) \\ &+\! \sum_{\mathbf{X}} \sum_{i \neq j} (q^{r} \pi_{i}^{(\mathbf{X})^{-1}} \pi_{j}^{(\mathbf{X})^{-1}})^{m} \chi(\sigma)^{2} \!+\! \sum_{\mathbf{X}} \sum_{i} (q^{r} \pi_{i}^{(\mathbf{X})^{-2}})^{m} \!\cdot\! 1/2 \!\cdot\! \{\chi(\sigma)^{2} \!-\! \chi(\sigma^{2})\} \\ &+\! \sum_{\mathbf{X}, \mathbf{X}': \mathbf{X} \neq \mathbf{X}'} \sum_{i, j} (q^{r} \pi_{i}^{(\mathbf{X})^{-1}} \pi_{j}^{(\mathbf{X}')^{-1}})^{m} \chi(\sigma) \chi'(\sigma) \!+\! O(q^{m(r-3/2)}). \end{split}$$

Here we remark that, as the traces of the *l*-adic representations are rational numbers, the character of $M_i | G$ is rational; and so if χ appears in the character of $M_i | G$, then $\overline{\chi}$ also appears in it, where $\overline{\chi}(\sigma) = \chi(\sigma^{-1})$. Moreover, by the expressions (*) and (**), it is easily verified that the set $\{\pi_1^{(\chi)}, \dots, \pi_{d\chi}^{(\chi)}\} = \{q\overline{\pi}_1^{(\chi)^{-1}}, \dots, q\overline{\pi}_{d\chi}^{(\chi)^{-1}}\}$ is identical with the set $\{q\pi_1^{(\overline{\chi})^{-1}}, \dots, q\pi_{d\chi}^{(\overline{\chi})^{-1}}\}$ completely.

Before stating the main results, we shall give three lemmas; except the last one, they are entirely of group-theoretical nature.

Lemma 1. Let H be a finite group of order h and F_{χ} an irreducible representation of H with character χ and of degree f. Then, for any irreducible character χ' of H, we have

$$\sum_{\tau\in H} \chi'(\tau^{-1}) F_{\chi}(\tau) = \begin{cases} h/f \cdot E_f, & \text{if } \chi = \chi', \\ 0, & \text{if } \chi \neq \chi'. \end{cases}$$

Proof. If we put $M_{\chi'} = \sum_{\tau \in H} \chi'(\tau^{-1}) F_{\chi}(\tau)$, we have $F_{\chi}(\sigma) M_{\chi'} = M_{\chi'}F_{\chi}(\sigma)$ for every σ in H. Therefore, by Schur's lemma, we have $M_{\chi'} = c \cdot E_f$ and so $f \cdot c = TrM_{\chi'} = \sum_{\tau \in H} \chi'(\tau^{-1})\chi(\tau)$. Then our assertion is clear.

Lemma 2. Let H be a finite group of order h and χ an irreducible character of H. Then we have $\sum_{\tau \in H} \{\chi(\tau)^2 - \chi(\tau^2)\} = 0$.

Proof. Let $F: \tau \to F(\tau) = (a_{ij}(\tau))$ be the representation of H with character χ . Then $F^*: \tau \to F^*(\tau) = (a_{ij}(\tau)) = {}^{i}F(\tau^{-1}) = (a_{ji}(\tau^{-1}))$ is also

an irreducible representation of H and we have $\chi(\tau^2) = \sum_i a_{ii}(\tau^2)$ = $\sum_{i,j} a_{ij}(\tau) a_{ji}(\tau) = \sum_{i,j} a_{ij}(\tau) a_{ij}^*(\tau^{-1})$. Hence, by Schur [3], we have $\sum_{\tau \in H} \chi(\tau^2) = \begin{cases} 0, \text{ if } F \text{ and } F^* \text{ are not equivalent,} \\ h, \text{ if } F \text{ and } F^* \text{ are equivalent.} \end{cases}$

On the other hand, if χ^* is the character of F^* , we have $\sum_{\tau} \chi(\tau)^2 = \sum_{\tau} \chi(\tau) \chi^*(\tau^{-1})$ and so

$$\sum_{\tau \in H} \chi(\tau)^2 = \begin{cases} 0, \text{ if } F \text{ and } F^* \text{ are not equivalent} \\ h, \text{ if } F \text{ and } F^* \text{ are equivalent.} \end{cases}$$

Lemma 3. The Albanese variety A(V) of V is isogenous to $\rho(A)$, where $\rho = \sum_{\sigma \in G} \eta_{\sigma}$, and $M_{l}(\pi_{A(V)})$ is equivalent to $(\pi_{ij}^{(1)})$ in (**).

Proof. The first assertion is proved similarly as in the proof of Theorem 3 in Ishida [1]. From (*) we have, by Lemma 1,

$$M_l(
ho) = M_l(\sum_\sigma \eta_\sigma) = \left(egin{array}{cc} n \cdot E_{d_1} & 0 \ 0 & 0 \end{array}
ight)$$

and so $M_l(\pi_{P(A)})(n \cdot E_{d_1} \ 0) = (n \cdot E_{d_1} \ 0) M_l(\pi_A)$. Hence $M_l(\pi_{P(A)})$ is equivalent to $(\pi_{ij}^{(1)})$ and the second assertion follows from the first.

Theorem 1. Let $P(u) = \prod_{i=1}^{2^g} (1 - q^{r-1}\pi_i^*u),^{2^{\gamma}}$ where $\pi_1^*, \dots, \pi_{2^g}^*$ are the characteristic roots of $M_l(\pi_{A(V)})$ and g is the dimension of A(V); let d_x be the multiplicity of χ in the character of $M_l \mid G$. Then $Z(u, V) \cdot (1 - q^r u) / P(u)$

has $\sum_{x:x=\bar{x}} 1/2 \cdot d_x(d_x-1) + \sum_{x,\bar{x}:x+\bar{x}} d_x d_{\bar{x}}$ poles on the circle $|u| = q^{-(r-1)}$ and, except them, it has neither zero nor pole in the circle $|u| < q^{-(r-3/2)}$.

Proof. From the expressions of det $M_l(\pi^m - \eta_\sigma)$, using the orthogonal relation of group-characters and Lemma 2, we have

$$1/n \cdot \sum_{\sigma \in G} \det M_{l}(\pi^{m} - \eta_{\sigma}) = q^{mr} - \sum_{i=1}^{d_{1}} (q^{r} \pi_{i}^{(1)^{-1}})^{m} \\ + \sum_{\substack{\chi: \chi = \bar{\chi} \\ j \leq i \neq j}} (q^{r} \pi_{i}^{(\chi)^{-1}} \pi_{j}^{(\chi)^{-1}})^{m} + \sum_{\substack{\chi, \bar{\chi}: \chi \neq \bar{\chi} \\ j \leq i \neq j}} \sum_{i,j} (q^{r} \pi_{i}^{(\chi)^{-1}} \pi_{j}^{(\bar{\chi})^{-1}})^{m} \\ + O(q^{m(r-3/2)}).$$

Then the above remarks and Lemma 3 show that the set $\{\pi_1^*, \dots, \pi_{2g}^*\}$ is identical with the set $\{\pi_1^{(1)}, \dots, \pi_{d_1}^{(1)}\} = \{q\pi_1^{(1)^{-1}}, \dots, q\pi_{d_1}^{(1)^{-1}}\}$ completely and $2g = d_1$. Therefore we have

 $d/du \cdot \log Z(u, V) + d/du \cdot \log (1 - q^r u) - d/du \cdot \log P(u)$

$$=\sum_{m=1}^{\infty} \{\sum_{\mathbf{X}:\,\mathbf{X}-\bar{\mathbf{X}}} \sum_{i\neq j} + \sum_{\mathbf{X},\bar{\mathbf{X}}:\,\mathbf{X}\neq\bar{\mathbf{X}}} \sum_{i,j} + C_m q^{m(r-3/2)}\} u^{m-1},$$

where C_m is a constant bounded in absolute value by a fixed constant C. Then all the assertions are easily verified.

Remark. In the case where $g \ge 1$ or G is abelian and, moreover, in many other cases, we can show that $u=q^{-(r-1)}$ is a pole of $Z(u, V) \cdot (1-q^r u)/P(u)$ (on the circle $|u|=q^{-(r-1)}$).

Corollary. Let $N(A, k_m)$ and $N(V, k_m)$ be the numbers of rational points of A and V over k_m , the (unique) extension over k of degree m. Then V is also an abelian variety over k if and only if we have $N(A, k_m) - N(V, k_m) = O(q^{m(r-1)})$

for all $m \ge 1$.

²⁾ If d_1 (or d_x)=0, we put, in the following, P(u) (or $P_x(u)$)=1.

M. Ishida

Proof. Clearly $N(A, k_m) - N(V, k_m) = O(q^{m(r-1)})$ is equivalent to the fact that Z(u, A)/Z(u, V) has neither zero nor pole in the circle $|u| < q^{-(r-1)}$ and also that $d_1 = 2g = 2r$ i.e. the degree of M_i . This equality holds if and only if $M_i | G = E_{2r}$, i.e. all $\eta_{\sigma} = 1$. And this is clearly a necessary and sufficient condition for V to be an abelian variety over k.

Theorem 2. Let $P_{\chi}(u) = \prod_{i=1}^{d_{\chi}} (1 - q^{r-1} \pi_i^{(\chi)} u)$, where $\pi_1^{(\chi)}, \dots, \pi_{d_{\chi}}^{(\chi)}$ are the characteristic roots of $(\pi_{ij}^{(\chi)})$ and d_{χ} is the multiplicity of χ in the character of $M_i \mid G$. Then, for $\chi \neq 1$,

$$L(u, \chi, A/V)/P_{x}(u)$$

has neither zero nor pole in the circle $|u| < q^{-(r-1)}$.

Proof. Similarly as in the proof of the preceding theorem, we have

$$\frac{1}{n \cdot \sum_{\sigma \in G} \det M_i(\pi^m - \eta_\sigma) \chi(\sigma)} = -\sum_{i=1}^{d_\chi} (q^r \pi_i^{(\bar{\chi})^{-1}})^m + O(q^{m(r-1)}) = -\sum_{i=1}^{d_\chi} (q^{r-1} \pi_i^{(\chi)})^m + O(q^{m(r-1)})$$

and so

 $d/du \cdot \log L(u, \chi, A/V) - d/du \cdot \log P_{\chi}(u) = \sum_{m=1}^{\infty} C_m^{(\chi)} q^{m(r-1)} u^{m-1}$, where $C_m^{(\chi)}$ is a constant bounded in absolute value by a fixed constant $C^{(\chi)}$. Then all the assertions are easily verified.

2. Let U/V be a Galois (not necessarily unramified) covering, defined over k, with group G and of degree n, where U, V are non-singular projective varieties (both defined over k) of dimension r. Then, from the preceding theorems, we can give the following conjectural statement on the behaviors of the L-series $L(u, \chi, U/V)$ of U/V over k in the circle $|u| < q^{-(r-1)}$, which is equivalent to that given by Lang. (As for the definition of L-series in general cases, see Lang [2].) Let A(U) be the Albanese variety of U. As k is a finite field, we may assume that A(U) and the canonical map: $U \rightarrow A(U)$ are defined over k. Then every element σ in G induces an automorphism η_{σ} , defined over k, of A(U) and $\pi_{A(U)}\eta_{\sigma} = \eta_{\sigma}\pi_{A(U)}$ for every σ in G; and so we have similarly as in 1:

$$M_{\iota}|G \!=\!\! egin{pmatrix} E_{d_1}\! imes\! 1 & 0 \ E_{d_{\chi}}\! imes\! F_{\chi} \ E_{d_{\chi'}}\! imes\! F_{\chi'} \ 0 & \ddots \end{pmatrix}\!\!\!, \hspace{1.5cm} M_{\iota}(\pi_{\scriptscriptstyle A(U)}) \!=\!\! egin{pmatrix} (\pi_{ij}^{\scriptscriptstyle (1)}\! imes\! E_{f_1} & 0 \ (\pi_{ij}^{\scriptscriptstyle (X)})\! imes\! E_{f_{\chi}} \ (\pi_{ij}^{\scriptscriptstyle (X')})\! imes\! E_{f_{\chi'}} \ 0 & \ddots \end{pmatrix}\!\!\!,$$

where 1, $F_{\chi}, F_{\chi'}, \cdots$ are non-equivalent irreducible representations of G with characters 1, χ, χ', \cdots and of degrees $f_1=1, f_{\chi}, f_{\chi'}, \cdots$. We put $P_{\chi}(u)=\prod_{i=1}^{d_{\chi}}(1-q^{r-1}\pi_i^{(\chi)}u)$, where $\pi_1^{(\chi)}, \cdots, \pi_{d_{\chi}}^{(\chi)}$ are the characteristic roots of $(\pi_{ij}^{(\chi)})$ and $a_{\chi}=1$ if $\chi=1$ and $a_{\chi}=0$ if $\chi \neq 1$. Then, for every χ (not excluding $\chi=1$),

$$L(u, \chi, U/V) \cdot (1-q^r u)^{a_{\chi}}/P_{\chi}(u)$$

has neither zero nor pole in the circle $|u| < q^{-(r-1)}$. As, in this general

case, we can also prove that $\rho(A(U))$ is isogenous to the Albanese variety A(V) of V where $\rho = \sum_{\sigma \in G} \eta_{\sigma}$, this conjecture complements those of Weil and Lang.

In the case where $U=\Gamma$, $V=\Gamma_0$ are non-singular complete curves defined over k, this conjecture is easily verified. In fact, by Weil [4, 5], we have

$$L(u,\chi,\Gamma/\Gamma_0) = \exp\left(-\int_0^u \varphi_{\chi}(u) \cdot du/u\right) (1-u)^{a\chi} (1-qu)^{a\chi},$$

where $\varphi_{\chi}(u) = 1/f_{\chi} \cdot \sum_{m=1}^{\infty} \operatorname{Tr} M_{l}(\rho_{\chi}\pi^{m})u^{m}$, $\rho_{\chi} = f_{\chi}/n \cdot \sum_{\sigma \in G} \chi(\sigma^{-1})\eta_{\sigma}$ and $\pi = \pi_{A(T)}$. Then by Lemma 1,

$$M_{l}(\rho_{\chi}\pi^{m}) = f_{\chi}/n \cdot M_{l} \left(\sum_{\sigma} \chi(\sigma^{-1})\eta_{\sigma} \right) M_{l}(\pi^{m}) \\ = f_{\chi}/n \cdot \begin{pmatrix} 0 \\ n/f_{\chi} \cdot E_{d_{\chi}} \times E_{f_{\chi}} \\ 0 \end{pmatrix} \cdot M_{l}(\pi^{m}) = \begin{pmatrix} 0 \\ (\pi_{ij}^{(\chi)})^{m} \times E_{f_{\chi}} \\ 0 \end{pmatrix}^{3};$$

and so we have $\operatorname{Tr} M_i(\rho_{\chi}\pi^m) = f_{\chi} \sum_{i=1}^{d_{\chi}} \pi_i^{(\chi)^m}$ and

$$\varphi_{\mathbf{X}}(u) = \sum_{m=1}^{\infty} (\sum_{i} \pi_{i}^{(\mathbf{X})m}) u^{m} = \sum_{i=1}^{d_{\mathbf{X}}} \pi_{i}^{(\mathbf{X})} u / (1 - \pi_{i}^{(\mathbf{X})} u).$$

Therefore we have

$$L(, u \chi, \Gamma/\Gamma_0) = \exp(\sum_i \log(1 - \pi_i^{(\chi)} u))/(1 - u)^{a_\chi} (1 - qu)^{a_\chi} = \prod_{i=1}^{d_\chi} (1 - \pi_i^{(\chi)} u)/(1 - u)^{a_\chi} (1 - qu)^{a_\chi}.$$

Since $Z(u, \Gamma) = \det (E_{2g} - M_l(\pi)u)/(1-u)(1-qu)$, this result gives an algebraic-geometrical explanation of the well-known group-theoretical decomposition of the zeta-function $Z(u, \Gamma)$:

 $Z(u, \Gamma) = Z(u, \Gamma_0) \prod_{\chi \neq 1} L(u, \chi, \Gamma/\Gamma_0)^{f_{\chi}}.$

Correction. In Theorem 2 of the previous paper [1], the functional equations of L-series $L(u, \chi, A/V)$ with $\chi \neq 1$ should be corrected as follows:

 $L(1/q^{r}u, \chi, A/V) = (-1)^{e(\chi)} W(\chi) u^{e(\chi)} L(u, \overline{\chi}, A/V),$ where $W(\chi)$ is a constant with $|W(\chi)| = q^{re(\chi)/2}$ and $W(\overline{\chi}) = \overline{W(\chi)}.$

References

- M. Ishida: On zeta-functions and L-series of algebraic varieties, Proc. Japan Acad., 34, 1-5 (1958).
- [2] S. Lang: Sur les séries L d'une variété algébrique, Bull. Soc. Math. France, 84, 385-407 (1956).
- [3] J. Schur: Die algebraischen Grundlagen der Darstellungstheorie der Gruppen, Zürich (1936).
- [4] A. Weil: Sur les Courbes Algébriques et les Variétés Qui s'én Déduisent, Paris (1948).
- [5] ——: Variétés Abéliennes et Courbes Algébriques, Paris (1948).

3) Here d_x may be 0. Then the matrix on the right side means 0-matrix.