116. Finite-to-one Closed Mappings and Dimension. I¹⁾

By Keiô NAGAMI

Department of Mathematics, Ehime University (Comm. by K. KUNUGI, M.J.A., Oct. 13, 1958)

The fundamental theorem of this note is as follows.

Theorem 1. Let R and S be metric spaces and f a closed mapping (continuous transformation) of R onto S. If $f^{-1}(y)$ consists of exactly $k(<\infty)$ points for every point $y \in S$ and dim $R \leq 0$, then we have dim $S \leq 0$.²⁾

As direct consequences of this theorem we get a large number of theorems of dimension theory for non-separable metric spaces, among which there is Morita-Katětov's fundamental theorem of dimension theory. This fact indicates the possibility of the development of dimension theory, other than Morita and Katětov's, for non-separable metric spaces based on Theorem 1. An analogue to Theorem 1 for the case when f is open will also be stated.

Lemma 1. R is a metric space with dim $R \leq 0$, if and only if R is a dense subset of an inverse limiting space of a sequence of discrete spaces.

This is a trivial modification of Morita [2, Theorem 10.2] or of Katětov [1, Theorem 3.6]; its proof is included in that of Theorem 4 below.

Proof of Theorem 1. By Lemma 1 we can assume that R is a dense subset of $\lim R_i$ obtained from $\{R_i, f_{jk}: R_j \to R_k \ (j > k)\}$ with discrete spaces $R_i = \{p_{i\alpha}; \alpha \in A_i\}$. We can assume that points of R_i are linearly-ordered such that for any $p_{i\alpha}, p_{i\beta}$ with $f_{ij}(p_{i\alpha}) \neq f_{ij}(p_{i\beta}), i > j$, it holds that $p_{i\alpha} > p_{i\beta}$ if and only if $f_{ij}(p_{i\alpha}) > f_{ij}(p_{i\beta})$. We introduce into points $(p_{1\alpha_1}, p_{2\alpha_2}, \cdots)$ of $\lim R_i$ the lexicographic order with respect to the one of R_i just defined. Let $x_1(y), \cdots, x_k(y) \in R$ be the inverse image of $y \in S$ with $x_1(y) < \cdots < x_k(y)$ and then R is decomposed into mutually disjoint subsets $T_i = \{x_i(y); y \in S\}, i = 1, \cdots, k$.

We shall show that every T_i is an F_{σ} . To do so it suffices to prove T_1 is an F_{σ} since the rest case is proved similarly. Let r(y), $y \in S$, be the smallest integer such that $\pi_r(x_1(y)), \dots, \pi_r(x_k(y))$ are mutually different points of R_r , where $\pi_r: \lim R_i \to R_r$ is the natural projection. Let $S_t = \{y; y \in S, r(y) \le t\}, t = 1, 2, \dots$, and $T_{jt} = T_j \cap f^{-1}(S_t)$ and then evidently i) $S = \bigcup_{t=1}^{\infty} S_t$, ii) $T_1 = \bigcup_{t=1}^{\infty} T_{1t}$, iii) $T_{1t} \subset T_{1,t+1}$. The

¹⁾ The detail of the content of the present note will be published in another place.

²⁾ dim=covering dimension.

family $\{f(V(p_{t\alpha})); V(p_{t\alpha}) = \{x; x \in R, \pi_t(x) = p_{t\alpha}\}, \alpha \in A_t\}$ is a closed covering of S such that the sum of any subfamily is also closed. Let y be an arbitrary point in S_t and then it is not hard to see that $W = S - \bigcup$ $\{f(V(p_{t\alpha})); \alpha \in A_t, y \notin f(V(p_{t\alpha}))\}$ is an open set of S which contains y and that $z \in S_t \cap W$ implies $\pi_t(x_j(y)) = \pi_t(x_j(z))$ for $j = 1, \dots, k$. Therefore an open set $G_{ty} = \bigcup_{j=2}^k (f^{-1}(W) \cap V(\pi_t(x_j(y))))$ is unable to meet T_{1t} . Thus $F_t = R - \bigcup \{G_{ty}; y \in S_t\}$ is a closed set with $F_t \supseteq T_{1t}$ and $F_t \cap (\bigcup_{i=2}^k T_{i}) = \phi$, $T_1 = \bigcup_{j=1}^{\infty} H_j$ and T_1 is an F_{σ} . Since $f \mid H_j$ is a homeomorphism, dim $f(H_j)$ ≤ 0 . Moreover $f(H_j)$ is closed in S and $S = \bigcup_{j=1}^{\infty} f(H_j)$ and hence dim $S \leq 0$ by the sum theorem.

We enumerate consequences of this theorem with sketch of proofs or without proofs.

Theorem 2. Let R and S be metric spaces with dim $R \le 0$ and f a closed mapping of R onto S such that $f^{-1}(y)$ is a finite set at every point $y \in S$. Then for any finite m, we have dim $\{y; |f^{-1}(y)| = m\} \le 0$.

Theorem 3. Let R and S be metric spaces with dim $R \le 0$ and f a closed finite-to-one mapping of R onto S. Then dim $S \le |\{i, \{y, |f^{-1}(y)|=i\} \neq \phi\}|-1$.

Theorem 4 (Morita [3, Theorem 4]). Let R be a metric space. Then dim $R \le n(<\infty)$ if and only if R is the image of a metric space R_0 with dim $R_0 \le 0$ under a closed mapping f such that $f^{-1}(y)$ consists of at most n+1 points for every point $y \in R$.

Proof. The sufficiency is evident from Theorem 3, and hence we show that the condition is necessary. Let $\mathfrak{U}_1 = \{U_\alpha; \alpha \in A_1\}$ be a locally finite open covering of R of order $\leq n+1$ such that the diameter of each $U_{\alpha} < 1$. Then there exist a closed covering $\mathfrak{F}_1 = \{F_{\alpha}; \alpha \in A_1\}$ and an open covering $\mathfrak{V}_1 = \{ V_{\alpha}; \alpha \in A_1 \}$ such that $U_{\alpha} \supset F_{\alpha} \supset V_{\alpha}$ for every $\alpha \in A_1$. Let $\mathfrak{U}_2 = \{U_\alpha; \alpha \in A_2\}$ be a locally finite open covering of order $\leq n+1$ such that the diameter of each $U_{lpha}(lpha \in A_2) < 1/2$ and \mathfrak{U}_2 refines \mathfrak{V}_1 . Let $\mathfrak{V}_2 = \{F_{\alpha}; \alpha \in A_2\}$ and $\mathfrak{V}_2 = \{V_{\alpha}; \alpha \in A_2\}$ be respectively a closed covering and an open covering of R such that $U_{\alpha} \supset F_{\alpha} \supset V_{\alpha}$ for every $\alpha \in A_2$. Proceeding this procedure, we get a sequence of closed coverings $\mathfrak{F}_1, \mathfrak{F}_2, \cdots$ such that $\mathfrak{F}_1 > \mathfrak{F}_2 > \cdots$ and the diameter of each set of $\mathfrak{F}_i < 1/i$ and the order of each $\mathfrak{F}_i \leq n+1$. For every *i* let us define a single-valued mapping $f_{i+1,i}$ of A_{i+1} with the discrete topology into A_i with the discrete one as follows: $f_{i+1,i}(\alpha) = \beta$ leads to $F_{\alpha} \subset F_{\beta}$. Let S_0 be the inverse limiting space obtained from $\{A_i; f_{i+1,i}\}$. Let R_0 be the subspace of S_0 such that $x = (\alpha_1, \alpha_2, \dots) \in R_0$ if and only if

 $\bigcap_{i=1}^{\infty} \{F_{\pi_i}; (\alpha_1, \alpha_2, \cdots) \in S_0\} \neq \phi.$ When $R \neq \phi$, we can see $R_0 \neq \phi$. Let $f: R_0 \to R$ be a transformation defined by $f(x) = \bigcap_{i=1}^{\infty} F_{\pi_i(x)}$. Then we can verify that f is a closed mapping of R_0 onto R such that $f^{-1}(y)$ consists of at most n+1 points.

Theorem 5 (Morita [2, Theorem 5.3] and Katětov [1, Theorem 3.4]). Let R be a metric space. Then dim $R \le n(<\infty)$ if and only if R is the sum of n+1 subspaces R_i with dim $R_i \le 0$.

Theorem 6 (Morita [2, Theorem 8.6] and Katetov [1, Theorem 3.4]). Let R be a metric space. Then dim R = Ind R, where Ind R is the inductive dimension of R defined by means of the separation of closed sets.

Theorem 7. Let R be a metric space with dim $R=n(<\infty)$. Then for every $\varepsilon > 0$, there exists a locally finite closed covering \mathfrak{F} of R of order n+1 such that the diameter of each set of $\mathfrak{F} < \varepsilon$ and that for any i, $1 \le i \le n+1$, there exists a point of R at which the order of \mathfrak{F} is i.

Theorem 8. Let R be a metric space with dim $R \le n(<\infty)$. Then there exist a dense subset A_0 of $\lim A_i = \lim \{A_i, f_{i+1,i}\}$, where A_i is the discrete space of indices, and a sequence of locally finite closed coverings $\mathfrak{F}_i = \{F_\alpha; \alpha \in A_i\}, i=1, 2, \cdots$, which satisfy the following conditions. (1) The diameter of each set of $\mathfrak{F}_i < 1/i$.

(2) The order of every $\mathfrak{F}_i \leq n+1$.

(3) For any i and any $\alpha \in A_i$,

No. 8]

 $F_{\alpha} = \bigcup \{F_{\beta}; \beta \in A_{i+1}, f_{i+1,i}(\beta) = \alpha \}.$

(4) For any *i* and any *s*, dim $\bigcap_{j=1}^{s} \{F_{\alpha(j)}, \alpha(1), \dots, \alpha(s) \text{ are mutually dif$ $ferent indices of <math>A_i\} \le n-s+1$.

Moreover if $\{\mathfrak{F}_i; i=1, 2, \cdots\}$ satisfies conditions (1), (2), (3), then it satisfies condition (4).

The first part of this theorem is implicitly stated in Morita [3].

Theorem 9. Let R be a metric space and let C_1, C_2, \cdots be countable closed sets of R with dim $C_i < \infty$. Then there exist a dense subset A_0 of $\lim A_i = \lim \{A_i; f_{i+1,i}\}$, where A_i is the discrete space of indices, and a sequence of locally finite closed coverings $\mathfrak{F}_i = \{F_\alpha; \alpha \in A_i\}, i = 1, 2, \cdots$, which satisfy the following conditions.

(1) The diameter of each set of $\mathfrak{F}_i < 1/i$.

(2) For any i and any j, the order of $\mathfrak{F}_i \cap C_j \leq \dim C_j + 1$.

(3) For any i and any $\alpha \in A_i$,

$$F_{\alpha} = \bigcup \{F_{\beta}; \beta \in A_{i+1}, f_{i+1,i}(\beta) = \alpha \}.$$

(4) For any i, s and t,

 $\dim \bigcap_{j=1}^{s} \{F_{\alpha(j)} \cap C_{i}; \alpha(1), \cdots, \alpha(s) \text{ are mutually different indices of } A_{i}\} \leq \dim C_{i} - s + 1.$

Moreover if $\{\mathfrak{F}_i; i=1, 2, \cdots\}$ satisfies conditions (1), (2), (3), then it satisfies condition (4).

The first part of this theorem has been proved by Morita, though unpublished.

An analogue to Theorem 2 is also true.

Theorem 10. Let R and S be metric spaces with dim $R \le 0$ and f an open mapping of R onto S such that $f^{-1}(y)$ is a finite set at every point $y \in S$. Then for any m, we have dim $\{y; |f^{-1}(y)| = m\} \le 0$.

Using this theorem we get

Theorem 11. Let R and S be metric spaces with dim $R \le 0$. If there exists an open mapping of R onto S such that $f^{-1}(y)$ is a finite set at every point $y \in S$, then dim $S \le 0$.

References

- M. Katětov: On the dimension of non-separable spaces I, Čehoslovack Mat. Ž., 2 (77), 333-368 (1952).
- [2] K. Morita: Normal families and dimension theory for metric spaces, Math. Ann., 128, 350-362 (1954).
- [3] K. Morita: A condition for the metrizability of topological spaces and for ndimensionality, Sci. Rep. Tokyo Kyoiku Daigaku, sect. A, 5, 33-36 (1955).