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In the preceding paper 1, we constructed an automorphism group
of a hyperfinite continuous factor which is isomorphic to a given
enumerably infinite group G and showed the automorphism group is
outer if G is torsion free whereas we have remained open that _1,
Theorem 2 is valid without exception. In this note we shall answer
the question in affirmative, that is, we shall show the following

THEOREM. There is an outer automorphism group of the hyper-

finite continuous factor which is isomorphic to the given enumerable
group.

We use same notations as in 1. X is the product space of
E-{0,1} (geG), F is the subset of X composed of the elements

x--x such that x-O except for a finite number of g’s. A measure
m is defined naturally on X and a group of measure preserving trans-
formations (TriTeF} is constructed isomorphically to F. ttence, by
the Murray-von Neumann method, a hyperfinite continuous factor A
is generated from operators Lx) ((x) denotes bounded measurable
functions on X) and Ur ( F) on the Hilbert space H--L(F x X).
Furthermore every element go e G gives a measure preserving trans-
formation T0 on X such that

XTo= Ex0] for x= [x]
and so go induces an automorphism of A such that

u/=
These automorphisms give the automorphism group in question.

1. A lemma of I. M. Snger. I. M. Singer [2 has analized in
detail inner automorphisms of finite factors constructed by the Murray-
von Neumann method. Especially he studied the automorphisms which
preserve the commutative subalgebra L generated from {L()}. Favour-
ably our automorphisms preserve L and his results prepare for us a
way to the proof of the theorem.

LEMMA 1 (I. M. Singer [2, Lemma 2.2). If (a) the ergodic group
of the measure preserving transformations {Tr yeF} satisfies the
condition:
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( for a measurable set E with positive measure and every Tr there
exists a subset F of E such that

m(FTr/F) - 0
where Zk denotes the symmetric difference and (fl) a unitary operator
Vff$r(x)] in A (cf. 1, Theorom 2) induces an inner automor-
phism of A which preserves L, then r(x)’s satisfy the following con-
ditions, where E {x (x 0},
(i) m( U Er)=l,

(ii) m(EE)=O if (T, eF),
(iii) m(ErTrNET)=O if ,
(iv) iSr(x) l=l a.e. on X, ir(x) l=l a.e. on E.

rF

2. Proof of the theorem
LEMMA 2. The measure preserving transformation Tr on X satis-

fies the condition (.) always.
PROOF. Let E be a measurable set with positive measure. If

m(ETxE) O, we may take F-- E. Next we assume m(ETAxE) 0
and = E],

1 for g--g1, g., g,,
Tg--

0 otherwise.
Let E be the set of elements x-[xg E such that

x--y(g) for g--g1, g.," ", gn
where y(g) is a function defined on {gl, g.,..., gn} taking values in
[0, 1}. Then E decomposes into a finite number of mutually disjoint
sets E,, E.,..., E. At least one of these sets has positive measure
and it is transformed onto another one by T. Hence an E gives a
desired set F. This proves the lemma.

Now we assume any automorphism go eG, which is not identity,
is inner and a unitary operator V [[$(x)_] induces the automorphism.
Then since

L) L.T0 L,
the automorphism preserves L and so we can utilize Singer’s lemma
for V.

We take up T--[T] in F, where

{1Tg=
0

As shown in [1, Theorem 2],

;I if c--Twhere Z (x) 0 otherwise,
and

]

0 otherwise
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Hence UrV: VUr implies

(x)- o(X-rTo) a.e.
By Singer’s result

i+r(x) l_l a.e. on E+
0 a.e. on X-- E+r.

Since m is F-invariant

X X

For an arbitrary element do in F and different elements h, h’, h’ ,...
Cin G, we choice elements c, c’, in F such that

do=c+r=c +r’=c’’+ r’= ",

then by the above result
m(Zo) (E %o) m(E,+,o) m(E+’"o)

0n the other hand, since c+r=c’+r
c+rT%-- c’+r’To if and only if r +rTo- r’+r’To.

rWrTo is an element r--Y in F such that
1 if g=h orr= 0 otherwise.

Similarly r’+r’To is ’--)’ such that
if g--h’ or g-h’= 0 otherwise.

Hence
r+rTo--r’r’To if and only if h-h’ or h--gh and h’-gh.

+ is identical with at most one ofThus, neglecting null sets, E
E+,%o, E+r,, ro,.., and disjoint with others. At any rate, an infinite
number of sets among E+r%o, E+,ro, E+r,,%,... are mutually dis-
joint with each other ignoring null sets. Since re(X)=1, we can
conclude m(Eo)--O. This means V=O, that is, the automorphism go
is not inner.
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