108. Hukuhara's Problem for Hyperbolic Equations with Two Independent Variables. II. Quasi-linear Case

By Setuzô Yosida
Department of Mathematics, University of Tokyo
(Comm. by Z. Suetuna, m.J.A., Oct. 13, 1958)

1. Introduction. In Part I of this report, we have explained the concept of Hukuhara's problem (we shall use the abbreviation "Problem H" hereafter) for partial differential equations, and proved its correct posedness for the semi-linear hyperbolic systems with two independent variables. In this part, we show the same results for the quasi-linear system.

Consider the real quasi-linear system of the form

$$
\begin{equation*}
\partial u_{i} / \partial t-\lambda_{i}(t, x, u) \cdot \partial u_{i} / \partial x=f_{i}(t, x, u), \quad i=1,2, \cdots, N \tag{1}
\end{equation*}
$$

where u stands for the N-dimensional vector (u_{1}, \cdots, u_{N}). We adopt the notations λ, f, etc. to represent the vectors $\left(\lambda_{1}, \cdots, \lambda_{N}\right),\left(f_{1}, \cdots, f_{N}\right)$, etc. We define the norm $\|g\|_{D}$ of a vector $g=\left(g_{1}, \cdots, g_{N}\right)$ whose components g_{i} are functions defined on some domain D, such as $\|g\|_{D}=$ $\sup _{i}\left[\sup _{D}\left|g_{i}\right|\right]$.

Our Problem H for the quasi-linear system (1) is defined quite similarly to the semi-linear case. Namely, let N curves $C_{i}, i=1,2, \cdots, N$ be given on a strip $G_{0}=\left\{0 \leq t \leq B_{0}, B_{0}>0\right\}$ of (t, x)-space and let the value of the i-th unknown u_{i} of (1) be prascribed on the i-th curve C_{i} for $i=1,2, \cdots, N$. Under these conditions we shall study the equations (1).

If we impose certain restrictions on the magnitude of the constant B_{0} and on the situation of the curves C_{i}, then the Problem H has a solution which is unique and stable under a certain class of smooth functions.
1° We assume that the components of λ and f are defined and continuous on a $\operatorname{strip} \bar{G}=\{0 \leq t \leq B,\|u\| \leq \rho ; B, \rho>0\}$ of (t, x, u)-space, where $\|u\|$ is defined such as $\|u\|=\operatorname{Sup}_{i}\left|u_{i}\right|$. We assume further that they have continuous derivatives up to second order with respect to u, x and their mixed differentiation, and that the norms $\|\cdot\|_{\vec{a}}$ of all those derived vectors including λ and f themselves are finite.
2° Conditions for the curves C_{i}
We require that for every i, the i-th curve C_{i} should be twice continuously differentiable, the absolute value of its curvature should be less than a constant Γ, and C_{i} should be uniformly transversal to the whole family of the i-th characteristics of (1) for every u such as $\|u\| \leq \rho$. The explanation of the last statement is as follows. Let
(t_{0}, x_{0}) be any point of (t, x)-space such as $0 \leq t_{0} \leq B_{0}$. At this point the i-th characteristic $l_{i}(u)$ of (1) has the direction coefficient $-\lambda_{i}\left(t_{0}, x_{0}, u\right.$ $\left(t_{0}, x_{0}\right)$), so that the set of direction coefficients $\left\{-\lambda_{i}\left(t_{0}, x_{0}, u\right)\right\}_{\mid\langle u| \leq \rho}$ gives us the all possible directions of the i-th characteristic at this point. Our requirement is that the minor angle between the direction of the i-th curve C_{i} and that of any possible direction of the i-th characteristic $l_{i}(u)$ should be bounded from below by a positive constant θ. This requirement is satisfied by all curves nearly parallel to x-axis since we have assumed the finiteness of $\|\lambda\|_{\bar{\alpha}}$ in 1°.
3° Conditions for the prescribed values of the solution
We adopt the notation $\phi_{i}(t, x)$ to represent the prescribed value of the i-th unknown of (1), so that $\phi_{i}(t, x)=u_{i}(t, x)$ for all points of $C_{i}, i=1,2, \cdots, N$. We assume that for every i, ϕ_{i} is twice continuously differentiable along C_{i}, and that the inequalities $\left|\phi_{i}\right|<\rho,\left|\partial \phi_{i}\right|$ $\partial s_{i}\left|\leq M_{1},\left|\partial^{2} \phi_{i} / \partial s_{i}{ }^{2}\right| \leq M_{2}\right.$ hold with some constants M_{1} and M_{2}, where $\partial / \partial s_{i}$ means the differentiation along C_{i}.

We define the size of the Problem H for the quasi-linear system (1) as the set of constants $B, \rho, \Gamma, \theta, M_{1}, M_{2}$ and the norms $\|\cdot\|_{\bar{G}}$ of the derived vectors of f and λ mentioned in 1°. Under these assumptions $1^{\circ}, 2^{\circ}, 3^{\circ}$, a solution of the Problem H for the system (1) exists on the strip $G_{0}=\left\{0 \leq t \leq B_{0}\right\}$ of (t, x)-space, where B_{0} is determined by several inequalities which consist of the quantities derived from the size of the problem. The special choice of curves C_{i} and functions ϕ_{i} does not affect the magnitude of B_{0} except their contributions to the size of the problem.

If we require that the norm of the derivative of the solution with respect to x should be less than a constant K, then the solution of the Problem H is unique and stable. More precisely, the breadth B_{0} of the domain G_{0} is determined by the inequalities involving the quantities derived from the constant K and the size of the problem, and the solution of the problem such as $\|u\|_{G_{0}} \leq \rho$ and $\|\partial u / \partial x\|_{q_{0}} \leq K$, is unique and stable on G_{0}.
2. Existence of the solution. In this section we show the existence of the solution of the Problem H for the system (1) under the assumptions that the conditions $1^{\circ} 2^{\circ} 3^{\circ}$ of $\S 1$ are satisfied by it. To simplify the notations, we assume that f_{i} and λ_{i} are the functions of u only. The other cases can be treated quite similarly.

For the moment we impose on B_{0} merely the condition such as $B_{0} \leq B$ and proceed by formal calculations. Further conditions for B_{0} will be stated later.

We construct the sequence $u^{(n)}$ successively by the sequence of the Problem H defined such as

$$
\begin{equation*}
\partial u_{i}^{(n+1)} / \partial t-\lambda_{i}\left(u^{(n)}\right) \cdot \partial u_{i}^{(n+1)} / \partial x=f_{i}\left(u^{(n)}\right), u_{i}^{(n+1)}=\phi_{i} \quad \text { on } C_{i}, \tag{2}
\end{equation*}
$$

where we put $u_{i}^{(-1)} \equiv 0$ for convenience sake. If we integrate the equations (2) along their characteristics $l_{i}^{(n)}$ which pass through the point (t_{0}, x_{0}) and are expressed such as $x=\psi_{i}^{(n)}(t)$, then we obtain

$$
\begin{equation*}
u_{i}^{(n+1)}\left(t_{0}, x_{0}\right)=\phi_{i}\left(t_{i}^{(n)}, x_{i}^{(n)}\right)+\int_{t_{i}^{(n)}}^{t_{0}} f_{i}\left(u^{(n)}\left(t, \psi_{i}^{(n)}(t)\right)\right) d t \tag{3}
\end{equation*}
$$

where ($t_{i}^{(n)}, x_{i}^{(n)}$) means the intersecting point of $l_{i}^{(n)}$ and C_{i}. Equations (2) are semi-linear (indeed linear) in the unknowns $u_{i}^{(n+1)}$, so that we can apply the theory of Part I and obtain for every n the unique solution $u^{(n+1)}$ on a strip $G_{0}=\left\{0 \leq t \leq B_{0}\right\}$, where B_{0} can be determined by the size of our quasi-linear problem independently of n. Every $u^{(n+1)}$ is twice continuously differentiable with respect to x and satisfies the integral equations (3). If the constant B_{0} satisfies further inequalities, then $u^{(n)}$ converges uniformly on G_{0} to a limit u which gives the solution of our problem. We shall explain the process briefly.
$1^{\circ}\left\|u^{(n)}\right\|_{\sigma_{0}} \leq \rho$ for all n.
$2^{\circ}\left\|\partial u^{(n)} / \partial x_{0}\right\|_{G_{0}} \leq K$ for some constant K.
To prove it, the inequalities $\left|\partial \psi_{i}^{(n)}(t) / \partial x_{0}\right| \leq \exp \left(B_{0} \cdot M \cdot K\right)$ for $0 \leq$ $t \leq B_{0}$, are needed and proved by induction, where M is a constant derived from the size of the problem. The condition to be satisfied by B_{0} is the form $M^{\prime} \cdot \exp \left(B_{0} \cdot M \cdot K\right)+B_{0} \cdot M^{\prime \prime} \cdot \exp \left(B_{0} \cdot M \cdot K\right) \cdot K \leq K$, where $M^{\prime}, M^{\prime \prime}$ are the constants derived from the size and K must be selected to satisfy the inequalities such as $K>M^{\prime}$ and $K \geq\left\|u^{(0)}\right\|_{\sigma_{0}}$.

Similarly the boundedness of $\left\|\partial^{2} u^{(n)} / \partial x_{0}{ }^{2}\right\|_{G_{0}}$ is obtained under the appropriate condition for B_{0}.
$3^{\circ} u^{(n)}$ converges uniformly on G_{0} to a continuous function u as $n \rightarrow \infty$.

Subtracting side by side from (2) the similar equations with n replaced with m, we have

$$
\begin{align*}
& \frac{\partial}{\partial t}\left[u_{i}^{(n+1)}-u_{i}^{(m+1)}\right]-\lambda_{i}\left(u^{(n)}\right) \cdot \frac{\partial}{\partial x}\left[u_{i}^{(n+1)}-u_{i}^{(m+1)}\right] \tag{4}\\
& =\frac{\partial u_{i}^{(m+1)}}{\partial x} \cdot\left[\lambda_{i}\left(u^{(n)}\right)-\lambda_{i}\left(u^{(m)}\right)\right]+f_{i}\left(u^{(n)}\right)-f_{i}\left(u^{(m)}\right)
\end{align*}
$$

As λ and f are Lipschitzian with some constants L and L^{\prime} respectively, we have from (4) the inequality such as $\left\|u^{(n+1)}-u^{(m+1)}\right\|_{\sigma_{0}} \leq\left(K \cdot L+L^{\prime}\right)$. $B_{0} \cdot\left\|u^{(n)}-u^{(m)}\right\|_{a_{0}}$, which reduces as $m, n \rightarrow \infty$ to the formula $d \leq$ $\left(K \cdot L+L^{\prime}\right) \cdot B_{0} \cdot d$, where $d=\limsup _{n, m \rightarrow \infty}\left\|u^{(n)}-u^{(m)}\right\|_{G_{0}}$ and K is the constant mentioned in 2°. If we impose on B_{0} the condition $\left(K \cdot L+L^{\prime}\right) B_{0}<1$, then we must have $d=0$, which assures us of the uniform convergence of $u^{(n)}$ to a continuous limit function u. Consequently $\psi_{i}^{(n)}(t)$ and ($t_{i}^{(n)}, x_{i}^{(n)}$) of (3) converge uniformly on G_{0} to a limit $\psi_{i}(t)$ and $\left(t_{i}, x_{i}\right)$, and u gives the solution of the integral equations such as

$$
\begin{equation*}
u_{i}\left(t_{0}, x_{0}\right)=\phi_{i}\left(t_{i}, x_{i}\right)+\int_{t_{i}}^{t_{0}} f_{i}\left(u\left(t, \psi_{i}(t)\right)\right) d t . \tag{5}
\end{equation*}
$$

If we can prove the smoothness of the solution u of (5), it will give the solution of our Problem H. The i-th component u_{i} of u is continuously differentiable in the direction of the curve expressed such as $x=\psi_{i}(t)$, whose direction coefficient is $-\lambda_{i}(u(t, x))=\lim _{n \rightarrow \infty}-\lambda_{i}\left(u^{(n)}(t, x)\right)$, so that to prove the smoothness of u_{i}, it remains only to examine the differentiation in x-direction.
$4^{\circ} \partial u^{(n)} / \partial x_{0}$ converges uniformly on G_{0} as $n \rightarrow \infty$.
Differentiating (4) with respect to x_{0} and noticing that on the curve C_{i} the value of $\left[\partial u_{i}^{(n)} / \partial x_{0}-\partial u_{i}^{(m)} / \partial x_{0}\right.$] converges uniformly to 0 as $m, n \rightarrow \infty$, we can prove the inequality $d \leq B_{0} \cdot M \cdot d$, where

$$
d=\limsup _{m, n \rightarrow \infty}\left\|\partial u^{(n)} / \partial x_{0}-\partial u^{(m)} / \partial x_{0}\right\|_{\sigma_{0}}
$$

and M is a constant derived from the size of the problem. If we impose on B_{0} the condition $B_{0} \cdot M<1$, then we must have $d=0$, and $\partial u^{(n)} / \partial x_{0}$ converges uniformly on G_{0}. Consequently, the limit u of $u^{(n)}$ is continuously differentiable with respect to x, so that u belongs to class C^{1} and gives the solution of the Problem H for the quasi-linear system (1).
3. Uniqueness and stability of the solution. The solution u of the Problem H for the system (1) is unique and stable on a certain strip $G_{0}=\left\{0 \leq t \leq B_{0}\right\}$ of (t, x)-space, if we require that u satisfies $\|u\|_{\sigma_{0}} \leq \rho$ and $\|\partial u / \partial x\|_{G_{0}} \leq K$ with a constant K. We notice that the solution obtained in $\S 2$ has these properties.
1° Uniqueness
Indeed, for any two such solutions u and v we should have

$$
\begin{align*}
\frac{\partial}{\partial t}\left[u_{i}-v_{i}\right]-\lambda_{i}(u) \cdot & \frac{\partial}{\partial x}\left[u_{i}-v_{i}\right]=\frac{\partial v_{i}}{\partial x}\left[\lambda_{i}(u)-\lambda_{i}(v)\right] \tag{6}\\
& +f_{i}(u)-f_{i}(v) .
\end{align*}
$$

Since λ and f are Lipschitzian with constants L and L^{\prime} respectively, integrating (6) along its characteristics, we can prove the inequality $\|u-v\|_{G_{0}} \leq\left(K \cdot L+L^{\prime}\right) \cdot B_{0} \cdot\|u-v\|_{G_{0}}$, so that if we impose on B_{0} the condition such as $\left(K \cdot L+L^{\prime}\right) \cdot B_{0}<1$, we must have $u=v$ on G_{0}.
2° Stability
Let two sets of data C_{i}, ϕ_{i} and $\bar{C}_{i}, \bar{\phi}_{i}$ be given whose contributions to the size are given by the same constants Γ, θ, M_{1} and M_{2}. We assume that these data have the following properties. To any point (t_{i}, x_{i}) of C_{i}, we let correspond a point $\left(\bar{t}_{i}, \bar{x}_{i}\right)$ of \bar{C}_{i} which is the intersecting point of $\overline{C_{i}}$ and one of the possible characteristics $l_{i}(u)$ through the point $\left(t_{i}, x_{i}\right)$. Namely, $l_{i}(u)$ is expressed as $x=\psi_{i}(t)$ by the solution
$\psi_{i}(t)$ of the ordinary differential equation such as $d \psi_{i}(t) / d t=-\lambda_{i}(u(t$, $\left.\psi_{i}(t)\right)$), $\psi_{i}\left(t_{i}\right)=x_{i}$, where u is any smooth function defined on $G=$ $\{0 \leq t \leq B\}$ and satisfies the condition $\|u\|_{G} \leq \rho$. We require that the inequality $\left|t_{i}-\bar{t}_{i}\right| \leq \varepsilon$ should hold with a positive constant ε for every point of C_{i} and for every u such as is stated above. We assume further that functions ϕ_{i} and $\bar{\phi}_{i}$ are given on C_{i} and \bar{C}_{i} in such a way that the inequality $\left|\phi_{i}\left(t_{i}, x_{i}\right)-\bar{\phi}_{i}\left(\bar{t}_{i}, \bar{x}_{i}\right)\right| \leq \delta$ should hold with a positive constant δ for every point of C_{i} and for every possible i-th characteristic. Under these assumptions we can prove easily
(7) $\quad\|u-\bar{u}\|_{G_{0}} \leq \delta+B_{0} \cdot L^{\prime} \cdot\left(\|u-\bar{u}\|_{a_{0}}+K \cdot\|\psi-\bar{\psi}\|_{a_{0}}\right)+\varepsilon \cdot\|f\|_{a_{0}}$, where u and \bar{u} are the solutions of the Problem H corresponding to the data C_{i}, ϕ_{i} and $\bar{C}_{i}, \bar{\phi}_{i}$. Since the order of the magnitude of $\|\psi-\bar{\psi}\|_{G_{0}}$ is that of $\|u-\bar{u}\|_{\theta_{0}}$, formula (7) assures us of the uniform convergence of \bar{u} to u on a certain strip G_{0} as $\delta, \varepsilon \rightarrow 0$, which means the stability property of the solution of our problem.

Remarks. Under certain conditions, we can replace the infinite strip G with the finite domain G^{\prime}. Definitions and arguments stated in the last section of Part I concerning semi-linear systems, are valid for quasi-linear systems with the single modification that we should consider all possible characteristics in this case. For example; if all N curves C_{i} pass through a fixed point $\left(t_{0}, x_{0}\right)$ of G and if there exists a piecewise smooth curve l_{0} such as $x=\psi_{0}(t), 0 \leq t \leq B$, which satisfies the following conditions; $x_{0}=\psi_{0}\left(t_{0}\right), d \psi_{0}(t) / d t \leq-\|\lambda\|_{\bar{G}}$ for $t>t_{0}$ and $d \psi_{0}(t) / d t \geq-\|\lambda\|_{\bar{G}}$ for $t<t_{0}$, then the right finiteness condition is satisfied along this l_{0}, where $G=\{0 \leq t \leq B\}$ means the strip in (t, x)-space and the relation between G^{\prime} and \bar{G}^{\prime} is similar to that between G and \bar{G}.

The author expresses his hearty thanks to Prof. M. Hukuhara, Prof. K. Yosida, and Dr. Y. Sibuya, for their helpful advice and incessant encouragement.

