134. On the Structure of the Associated Modular

By Tsuyoshi ANDÔ

Research Institute of Applied Electricity, Hokkaidô University (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1958)

Let R be a modulared semi-ordered linear space¹⁾ with a modular m. The structure of the conjugate modular \overline{m} on the conjugate space \overline{R}^m is investigated in detail.²⁾ On the other hand, it is known³⁾ that if the norm on R by m is not continuous, \overline{R}^m constitutes a proper normal manifold of the associated space \widetilde{R}^m . In this short note, we shall determine completely the structure of the associated modular \widetilde{m} on the orthogonal complement $(\overline{R}^m)^1$ of \overline{R}^m in \widetilde{R}^m .

Theorem. The associated modular \tilde{m} is linear⁴ on $(\overline{R}^m)^{\downarrow}$; more precisely it is given by the formula:

$$\widetilde{m}(\widetilde{a}) = \sup_{m(x) < \infty} \mid \widetilde{a}(x) \mid \qquad for \ all \ \ \widetilde{a} \in (\overline{R}^m)^{\perp}.$$

Proof. There exists⁵⁾ a normal manifold N of R such that m is semi-simple on N and is singular on N^{\perp} . It is known that N is semiregular⁶⁾ and the associated modular \tilde{m} is linear on $[N^{\perp}]\tilde{R}^{m}$. Thus to prove Theorem we may assume that R is semi-regular.

Let $0 \leq \tilde{a} \in (\overline{R}^m)^{\perp}$ and $0 \leq a \in R$ $m(a) < \infty$. Put $F = \{x; 0 \leq x \leq a \quad \tilde{a}(x) = 0\}$. Then it is a lattice manifold. Putting $e = \bigcup_{x \in F} x$, we shall show first that a = e. For this purpose, it is sufficient to prove that

 $\overline{x}(a-e) \leq \varepsilon$ for any $0 \leq \overline{x} \in \overline{R}^m$ and $\varepsilon > 0$,

because R is semi-regular by assumption. Since $\tilde{a} \frown \bar{x} = 0$, there exist⁷⁾ $\{b_{\nu=1}^{\infty} \subset R$ such that

 $0 \leq b_{\nu} \leq a \text{ and } \overline{x}(a-b_{\nu}) + \widetilde{a}(b_{\nu}) \leq \varepsilon/2^{\nu} \quad (\nu=1, 2, \cdots).$ Putting $b = \bigcap_{\nu=1}^{\infty} b_{\nu}$, we have $0 \leq \widetilde{a}(b) \leq \inf_{\nu=1,2,\dots} \widetilde{a}(b_{\nu}) = 0$, namely $b \in F$. Further universal continuity of \overline{x} implies $\overline{x}(a-b) = \overline{x}(\bigcup_{\nu=1}^{\infty} (a-b_{\nu}))$ $\leq \sum_{\nu=1}^{\infty} \overline{x}(a-b_{\nu}) \leq \varepsilon.$ From this and the definition of e it follows that

2) Ibid., §§ 41-46.

- 3) Ibid., Theorem 31.10.
- 4) $\widetilde{m}(\xi \widetilde{a}) = \xi \widetilde{m}(\widetilde{a})$ for all $\xi \ge 0$.

6) Semi-regularity means that $\overline{x}(a)=0$ (for all $\overline{x}\in\overline{R}^m$) implies a=0.

¹⁾ We use the definitions, terminology, and notations in H. Nakano: Modulared Semi-ordered Linear Spaces, Maruzen, Tokyo (1950).

⁵⁾ Ibid., §35.

⁷⁾ Ibid., §18.

T. Andô

588

$$\overline{x}(a-e) \leq \overline{x}(a-b) \leq \varepsilon.$$

Thus we have proved a=e.

Since $\sup_{x\in F} m(x) = m(a)$ by semi-continuity⁸⁾ of m, for any $\varepsilon > 0$ there exists $c \in \mathbf{F}$ such that

Since
$$m(a-c) \leq m(a) - m(c) \leq \varepsilon$$
.
 $\widetilde{m}(\widetilde{a}) = \sup_{m(x) < \infty} \{\widetilde{a}(x) - m(x)\}$

by the definition of the associated modular, we obtain

$$\widetilde{a}(a) = \widetilde{a}(a-c) + \widetilde{a}(c) = \widetilde{a}(a-c)$$

$$\leq \widetilde{a}(a-c) - m(a-c) + \varepsilon \leq \widetilde{m}(\widetilde{a}) + \varepsilon.$$

$$m(a) < \infty \text{ and } \varepsilon > 0 \text{ are arbitrary, we can$$

Since $0 \leq a \in R$ $m(a) < \infty$ and $\varepsilon > 0$ are arbitrary, we can conclude $\sup_{m(x) < \infty} | \widetilde{a}(x) | \leq \widetilde{m}(\widetilde{a}).$

Now the proof is complete, because the converse inequality is obviously valid.

Corollary. The first norm and the second one by the associated modular \tilde{m} coincide on $(\overline{R}^n)^1$, and

 $\|\tilde{a}+\tilde{b}\|=\|\tilde{a}\|+\|\tilde{b}\|$ for all $0\leq \tilde{a}, \tilde{b}\in (\bar{R}^m)^1$.

Remark. The assertion of Theorem is in essence a reformulation of reflexivity of a semi-continuous modular.⁹⁾

⁸⁾ Semi-continuity means that $0 \le x_{\lambda} \uparrow_{\lambda \in A} x$ implies $\sup m(x_{\lambda}) = m(x)$.

⁹⁾ See H. Nakano: Modulars on semi-ordered linear spaces I, Jour. Fac. Sci. Hokkaido Univ., ser. I, **13**, 41-52 (1956).