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1. It is well known that an irreducible, complete, (upper and
lower) continuous, complemented modular lattice L is finite-dimensional
if and only if the following condition is satisfied:)

Condition 1. L contains no infinite sequence (ai) of nonzero
elements ai, i-l, 2,..., such that for every i> l there exists an ele-

ment b satisfying a_l_ab ) and ab.
The purpose of the present paper is to prove the following theo-

rem. By re(L) we denote the least upper bound of all integers r such
that L contains an independent system of mutually projective nonzero
r elements.

Theorem. For any complete upper continuous modular lattice L
the condition 1 is equivalent to each of the following two conditions:

Condition M. re(L) is finite.
Condition F. There is no independent countable subset (a,) such

that a a 0 for every i.3)

As a consequence of this we shall obtain
Corollary 1. Let be a semisimple ring with unit element and

assume that 9-left (-right) module is injective. Then is a regular
ring (in the sense of v. Neumann), and the following three conditions
are equivalent:

( is of bounded index.
(ii) / is a simple ring with minimum condition for every

primitive ideal .
(iii) is P-soluble.)

In this case, 9t-right (-left) module , is also injective.
2. Henceforth L always will denote a modular lattice with zero.
Lemma 1. Let ab-ac-O and a[Jb>_c. Then (a [J c) bc.5)

Lemma 2. If Oa_b--bjb.... bn, then there exist nonzero
a’, such that a> a’-.b’ b for some i.

In fact, if a (b.U... [J bn)--O then b (a b. [J... [J b,,)a by
Lemma 1; hence Lemma 2 follows by induction.

1) See [7].

2) denotes the join of independent elements.
3) By a b we mean the existence of c such that acb.
4) See [5].

5) bac is meant that ab=aOc.
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We denote m(L(O, a)) for the interval L(0, a) of L by re(a).
Lemma 3. If ab-O, then m(a[.Jb)<_m(a)+.m(b).
Proof. If either re(a) or re(b) is o or 0, Lemma is obvious. Let

0< re(a), re(b) < o. Suppose a b_>x ... Jx where u-- re(a)+re(b)+ 1
and xzx 0 for every i, j. If, say, x b 0, then we replace
by xb and each of the other x by a suitable element which is con-
tained in it and projective to xb. Repeating this process we may
assume without loss of generality that x b- 0 or x_<b for every
i. Let xb-0, j-1,...,r, and x_<b,k-r+l,...,u. If r-0, then
u<_m(b), a contradiction. Hence r>0. Set (xj[.Jb)ax, j--l,...,
By Lemma 1, xx. If +/-(x,..., x) we have a contradiction since
it follows from this that _l_(x,..., x, x/,..., Xu) and u<_m(a)+m(b).
Thus, +/-(x,.. x) and not _k(x,.. .,x/) for some p. Since bx

Xp+l)--bxby Lemma 1, if +/-(b, x, x/) we see that _k(b, x,.
and _k (x, .., x/) which is a contradiction. Hence fb(x[J... U
x/) 0. By Lemma 2 there exist mutually projective nonzero f, j,
2"=1, ...,p--i such that f<_f and 5_x. Let ,k-p+2, ...,u, be

elements satisfying _-x and 5f. Clearly +/-(x,..., x,b), and so

+/- (x,. ., x, b), whence +/- (5,. ., 5, f). Since [.J [_J [_J f_x [_J

[Jx/, it follows that +/-(,..., ,f, /.,..., ). Therefore we have
obtained an independent system of mutually projective u elements in
which u--r+1 elements are contained in b. Repeating this procedure
we may arrive at the case that re(b)+1 of x are contained in b, and
have a contradiction as desired.

For any element aL we denote by a* the set of all elements x
with the properties that (i) a>_x and (ii) if a>_yO then xyO.
Thus, if a* b for some a : 0, then b O. a* b and b* c imply a* c.
a*b and a>_c mean c*bc. Hence a*bc if a*b,c.

An element a is called an m-element provided that (i) a>_b, ac--O
and bc imply b-c-O; (ii) there are mutually projective elements

a,..., a such that a--a... a and m(a)--l, i--1,..., n. In this
case it follows from Lemma 3 that m(a)=n.

Lemma 4. Let 0 b_a[... [a and let every a be an m-ele-
ment. Then, ba-O for some i.

Proof is easily obtained from Lemma 2 and the definition of m-
elements.

Lemma 5. Let a be an m-element such that m(a)<n. If b--b... Jb and bb for every i, j, then ab-O.
Proof. Let abO. By Lemma 2, a>_a’zb’_b for some a’=0,

b’ and j. Denote the projective isomorphism between L(0, b) and L(0,
bi) by Ti, i--1,..., n. Suppose that b’Tx and ax=ab’Tx--O.
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Then xxT:.gb’za’<<_a, so that x--O, whence ab’T(b’ T)* and
6b bso (arlb’T)TTb’*. It follows from this that b":---=( T)TTb’*.

Clearly b"0 since b’0. Now b"Tt_<a n b’Tganb and we have

ab"T b"T... b"TO. This implies that m(a)n and yields
a contradiction.

Lemma 6. Let a, i-l, 2,..., be a finite or infinite sequence of m-
elements. If m(a) m(a) for every i j, then (a) is an independent
system.

Proof. With no loss of generality we may suppose that m(a)
<m(a+) for i=l, 2,.... Let (a ... a)na+0. By Lemma 4,
a a,+0 for some 1 gin. This contradicts Lemma 5. Therefore,

(a,. ., a,+) and (a, i- 1, 2,...) by induction.
Lemma 7. Assume that L satisfies the condition F. If a,..., a,

are mutually projective and independent elements such that m(a)=l
for every i, then there exists an m-element b with the properties that
re(b)n and (a U"" Ua) b 0.

Proof. Let us suppose that Lemma is false. Now we shall con-
struct an infinite set of elements x, i--n, n+l,..., j=l,..., i, satis-
fying the conditions that (i) x, j=l,..., i, are mutually projective
and independent, (ii) x+,gx., (iii) m(x)-1 for every i, j, and (iv)
i-n, n+l,. ., are independent. First we set aXn2, j=l," ", n. As-
sume that we have constructed x, i-n,...,n’, j=l,...,i, with the prop-
erties above. By Lemma 3 m(x,...Xn,.)--n’n. Since a-x

x,, j= 1,..., n, we have (a... a) (Xn, ’’" U Xn’’) X.’’"X,.0. From these we see that Xn ’’" X.. is not an m-element.
Hence x, Xn..Y, (X. X..)z--O and yzzO for some
y, z. By Lemma 2 and the projectivities between x., there are mutu-
ally projective nonzero elements x.+,, j-- 1,. ., n’+ 1, such that
x..,=l,...,n’, and X,+,n,+ gZ. Evidently (x, ...
and x,+,, j= 1, n’+ 1 are independent. Now put d,.+(,=,x,)
x.+.,+. Then each x,.+., j=l,..., n’, contains an element d projective
to d,,+. Evidently, d, j=l,..., n’+l, are independent and dgx,.+,
<x, j:n,... n’. Hence ’+ < ’x,. Since m( "x <
=n’--n by Lemma 3, this implies that d,+,--0, and hence x,, i--n,
.., n’+l, are independent, as desired.
Now x+,,+,x+,,.x,, i.e. x,x+,,+,. By virtue of the inde-

pendence of x,, i--n, n+1,. ., we have a contradiction to F, completing
the proof.

Proof of Theorem. (Fd) Let (a) and (b)be infinite sequences

such that aa+,b+, and a+,b+, for every i. Then b+,gab and

6) An infinite set of elements of L is said to be independent in case every finite
subset is independent.
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b b,+ 1. Since clearly b (i 1) are independent, this contradicts F.
(z/and FM)First we note that the values re(a) for all m-elements
a are bounded. In fact, if not we may find an infinite sequence (a)
of m-elements such that m(a/l)m(ai). Then (ai) is independent by

Lemma 6. Let a-m- and anan, for every j, j’. Set b=1 nj

,=ai. Clearly bibi+ and (hi) is indepedent, contradicting F.
Thus, re(a) for m-elements a are bounded. Denote its maximum by

m. Let L 0-a and assume aza,, 0 for every i, i’. It follows
easily from 2 that a contains an element a such that m(a)--l. If
we replace a by a and each of the other a by an element contained
in it and projective to a, we may assume with loss of generality
m(a)--...--m(a)-l. From Lemma 7 there exists an m-element b
such that m(b)k. Therefore m k and m(L)--m. (MF) Let (a)
be a countable independent set such that aa+ for every i. Then,
for every n there are mutually projective nonzero bn, i--1,..., n satis-
fying bna. Since bn are independent we get m(L)--, contradicting

M. (F) Let (a) be a countable independent set such that
for every i. Then for every n there exist mutually projective nonzero- andcU:bn,j-1,...,2 satisfying bna%_. Put c,=
"-+ b. Then c,c$ and ct >c,c, which contradictsk--t+

3. Let be a semisimple Pring, and L the lattice of all left
(right) ideals of t. In a recent paper we have noted that m(L)co-
incides with the index of 9.) Therefore, as an immediate consequence
of our Theorem we obtain

Corollary 2. Let 9 be a semisimple I-ring. Then the following
conditions are equivalent:

a ) 9 is of bounded index.
(b) There is no infinite sequence of nonzero 1 (right) ideals

I, such that i, I,+x@ 15+, i+ being a 1 (right) ideal isomorphic to
(c) There is no infinite sequence of nonzero 1 (right) ideals

I such that the sum I is direct and I+ is isomorphic to a subideal
of

For any module we denote by * the set of all submodules
of with the property that’0 for every submodule ’0

of .
Lemma 8. Let be the minimal injective extensions) of a module, and the endomorphism ring of ,. Then the radical of is the

set N of all endomorphisms 0 of satisfying Ker 0*. Moreover,
/N is isomorphic to the extended centralizer over and hence is

regular. In case is semisimple, every submodule of has the

7) See [9, Lemma 4].
8) See [_1, Section 4].
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unique minimal injective extension contained in . is the sum
of all essential extensions of in .

Proof. If Ker Oe,* for te@, then Ker (1+)-0, since Ker
Ker(l+O)-0. Hence Im(l+0) (=) is a direct summand of and
clearly contains Ker 0 (e*); this implies Im(l+0)-- and 0 is quasi-
regular in . It is easy to prove that N is a two-sided ideal of @ and
that /N is isomorphic to the extended centralizer) over . Since
any extended centralizer is regular, /N is semisimple and N is the

radical of @. Next, assume that @ is semisimple, and let and
be minimal injective extensions of in . By we denote a maxi-

mal submodule disjoint to . Since is an essential extension of

we have --0. Now, there is an element Oe such that 0_,
and ()(1-0)-0. Clearly*, and so 1--0, hence 1=0.

Therefore ’-.
Proof of Corollary 1. By Lemma 8, 9t is a regular ring. We

denote the lattice of all principal left ideals of }t by L. Let (9e)eL.
Then the minimal injective extension left ideal of _]}e is uniquely
determined by Lemma 8, and is clearly the join [_J }e of (}e). Hence

L is complete. To see the upper continuity of L we assume that
(9e) is simply ordered. Since U 9e is an essential extension of }e,
that is, [J }e)* ,e, we have (( [.J }te) }f)* (] e) }tf= (}e
1 }f) for any 9feL. Hence ( [_J ,e) }f [_J (}te tf), which shows.

the upper continuity of L. Thus, it follows from Theorem that for
Conditions z/and M are equivalent. Now, (i) (ii) (iii) are known."
Levitzki proved that an FI-ring is P-soluble if and only if it satisfies
the D-condition.2 It is not too hard to see that the D-condition for
a regular ring } is equivalent to Condition / for L. On the other
hand, the boundedness of indeces in is equivalent to Condition M
for L,t, and hence also to Condition M for L. Therefore we have
(iii) : (i). The last statement of Corollary I follows from [8, Theo-
rem 5, completing the proof.

References

[1] B. Eckmann und A. Schopf" Ueber injective Moduln, Archiv der Mathematik,
4 (1956).

[2] N. Jacobson: Structure of rings, Amer. Math. Soc. Colloq. Publ., 37 (1956).
[3] R.E. Johnson: The extended centralizer of a ring over a module, Proc. Amer.

Math. Soc., 2 (1951).

9) See
10) See [1, (4.1)].
11) See [4, Theorems 5.6 and 5.7].
12) See [5] and [6, Corollary 1 of Theorem 5.3].



No. 1] On a Theorem on Modular Lattices 21

[]

[5]
[6]

[7]

[9]

J. Levitzki: On the structure of algebraic algebras and related rings, Trans.
Amer. Math. Soc., 74 (1953).
: On P-soluble rings, Trans. Amer. Math. Soc., 77 (1954).
: The matricial rank and its application in the theory of /-rings, Revista

da Faculdade de Cincias de Lisboa, 3 (1955).
J. yon Neumann: Lectures on Continuous Geometry I, Princeton (1936-1937).
Y. Utumi" On quotient rings, Osaka Math. J., 8 (1956).
---: A note on an inequality of Levitzki, Proc. Japan Acad., 33 (1957).


