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1. It is well known that an irreducible, complete, (upper and
lower) continuous, complemented modular lattice L is finite-dimensional
if and only if the following condition is satisfied:®

Condition 4. L contains mo infinite sequence (a,) of monzero
elements a,, 1=1, 2, -, such that for every 1>1 there exists an ele-
ment b, satisfying a, ,>a,)b,? and a,~b,.

The purpose of the present paper is to prove the following theo-
rem. By m(L) we denote the least upper bound of all integers » such
that L contains an independent system of mutually projective nonzero
r elements.

Theorem. For any complete upper continuous modular lattice L
the condition 4 is equivalent to each of the following two conditions:

Condition M. m(L) is finite.

Condition F. There is no independent countable subset (a;) such
that a,Za,,,==0 for every i.®

As a consequence of this we shall obtain

Corollary 1. Let % be a semisimple ring with unit element and
assume that R-left (-right) module N is injective. Then N is a regular

ring (in the sense of v. Neumann), and the following three conditions
are equivalent:

(i) N s of bounded indew.

(ii) R/P 4s a simple ring with minimum condition for every
primitive ideal P.

(iii)) N s P-soluble.”

In this case, R-right (-left) module N is also injective.

2. Henceforth L always will denote a modular lattice with zero.

Lemma 1. Let aNbd=aNe¢=0 and aJb>c. Then (aJc)1b~,c.”

Lemma 2. If 03ca<b=b,{Jb,lJ--- Jb,, then there exist nonzero
o', b such that a>a'~b <b, for some 1.

In fact, if aN(b,U---Ub,)=0, then b,N(aUbU---Ubd,)~a by
Lemma 1; hence Lemma 2 follows by induction.

1) See [7].

2) U denotes the join of independent elements.
3) By aZb we mean the existence of ¢ such that a>>cab.
4) See [5].

5) b~gc is meant that anzaUc.
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We denote m(L(0, @)) for the interval L(0,a) of L by m(a).

Lemma 8. If aNb=0, then m(abd)<m(a)+m(D).

Proof. If either m(a) or m(b) is = or 0, Lemma is obvious. Let
0<m(a), m(b)< . Suppose alJb>a,J- - - U, where u=m(a)+m(b)+1
and x,~z,%=0 for every 4, j. If, say, (100, then we replace z,
by 2,(b and each of the other x, by a suitable element which is con-
tained in it and projective to 2,(1b. Repeating this process we may
assume without loss of generality that x;16=0 or x,<b for every
4. Let 2;Nb=0, j=1,---,7, and #,<b, k=r+1,---,u. If r=0, then
u<m(b), a contradiction. Hence r>0. Set (x;Ubd)Na=uxj, j=1,---,7.
By Lemma 1, #j=z;. If L(f,---,%/) we have a contradiction since
it follows from this that L(zf,---, 2, 2, -+, 2,) and uw<m(a)+m(D).
Thus, L(zf,---,2)) and not L(af---,2,,,) for some p. Since mbj
=mb§ by Lemma 1, if L(b,x,,---,2,,,) we see that L(b, f,---, 25,,)
and L(xf, ---,,,,) which is a contradiction. Hence f=b(x,U-:-U
%,,1)30. By Lemma 2 there exist mutually projective nonzero f, %,

j=1, .-+, p+1 such that f<f and z,<z,, Let z, k=p+2, ---,u, be

elements satisfying z,<w, and z,~f. Clearly L(«/, ---,x},b), and so
L(x,, -+, »,,b), whence L(Z;,- -, %, f). Since z,J---UZ,Uf<z,U---
Uw,,,, it follows that L(,,---, Ep,ffa?wgp -+, %,). Therefore we have

obtained an independent system of mutually projective u elements in
which #—7r+41 elements are contained in b. Repeating this procedure
we may arrive at the case that m(b)+1 of x, are contained in b, and
have a contradiction as desired.

For any element acL we denote by a* the set of all elements x
with the properties that (i) a>« and (ii) if a>y=0 then xy=xO0.
Thus, if a*3b for some a0, then b=0. a*3band b*s¢ imply a*>c.
a*3b and a>c mean c¢*>b()c. Hence a*sb(c if a*3d,ec.

An element a is called an m-element provided that (i) a>b,a(1c=0
and b=~c¢ imply b=c¢=0; (ii) there are mutually projective elements
s, +,a, such that a=a,J---Ja, and m(a,)=1, i=1,---,n. In this
case it follows from Lemma 3 that m(a)=mn.

Lemma 4. Let 0b<a,J---Ua, and let every a, be an m-ele-
ment. Then, b(Na,==0 for some 7.

Proof is easily obtained from Lemma 2 and the definition of m-
elements.

Lemma 5. Let a be an m-element such that m(a)<n. If b=b,
U- -+ UUb, and b,~b; for every 1,7, then aNb=0.

Proof. Let ab0. By Lemma 2, a>a’'~b'<b; for some a’=0,
b" and j. Denote the projective isomorphism between L(0, b,) and L(0,
b,) by T, i=1,--+,n. Suppose that b'T;>x and aNx=aNb'T;Nx=0.
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Then x=zT;'<b'=a'<a, so that =0, whence a(b'T,e(d’ T,)* and
so (aNO'T,)T7;*eb™. It follows from this that "=, (aNV'T,)T: eb’*.
Clearly 0”30 since b'20. Now b"'T,<aNb'T,<ab, and we have
a>b"T, 0" T, - - - Jb'T,20. This implies that m(a)>n and yields
a contradiction.

Lemma 6. Let a,¢=1,2,---,be a finite or infinite sequence of m-

elements. If m(a,)3=m(a,) for every 7=, then (a,) is an independent
system.®

Proof. With no loss of generality we may suppose that m(a,)
<m(a,,,) for 1=1,2,--- . Let (@:U---Ua,)N.50. By Lemma 4,
@;(@,,; 20 for some 1<i<n. This contradicts Lemma 5. Therefore,
L(ay--+,a,,4) and L(a;1=1,2,---) by induction.

Lemma 7. Assume that L satisfies the condition F. If a,,---,a,
are mutually projective and independent elements such that m(a;)=1
for every 4, then there exists an m-element b with the properties that
m(b)>n and (a;U---Ua,)NdF0.

Proof. Let us suppose that Lemma is false. Now we shall con-
struct an infinite set of elements x,;, t=n,n+1,---, j=1,---, 1, satis-
fying the conditions that (i) x,,j=1,---,%, are mutually projective
and independent, (ii) ;. ;<®,;, (iii) m(z,;)=1 for every 4, j, and (iv) @,
i=n, n+1, -+, are independent. First we set a,=x,;, j=1,---,n. As-
sume that we have constructed «,;, i=mn,---,n/, j=1,- - -,4, with the prop-
erties above. By Lemma 3 m(x,,U...U%,,)=n">n. Since a;=x,,
=%, §=1,---,m, we have (a;U--- Ua,) N (@1 U~ ULw) 220U -+ U
%, 0. From these we see that x,,ll:J ce Ux,,n is not an m-element.
Hence 2. -U%pw>y, @ U- - Uwr)12=0 and y=z=:0 for some
¥, 2. By Lemma 2 and the projectivities between «z,,;, there are mutu-
ally projective nonzero elements ., ;, =1, -+, n'+1, such that x,,, ;
<%, ;,i=1,---,n,and €, ,,; <2 Evidently (¢, U -+ - U®pn) N %ns1,n01=0
and 2, ;, J=1,- -+, n'+1, are independent. Now put dn,”E(Ui’;;,w“)ﬂ
%o1,wee Then each @, ;, j=1,---, %, contains an element d, projective
to d,,,. Evidently, d,, j=1,---,n'41, are independent and d;<x,,, ,
<w,,4=mn,-,n'. Hence U5, < ) ;. Since m(U) utt;;) <Sum(®;,)
=n'—n by Lemma 3, this implies that d,,;=0, and hence z,, 1=n,
..+, m'+1, are independent, as desired.

NOW @151 %401, <%y 1€ Xy ZXi10. By virtue of the inde-
pendence of x,,i=n,n+1,---, we have a contradiction to F, completing
the proof.

Proof of Theorem. (F=d4) Let (a;) and (b,) be infinite sequences
such that aizamme and a,,;~b,,, for every ©. Then b,,,<a,;~b;, and

6) An infinite set of elements of L is said to be independent in case every finite
subset is independent.
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b,z b;,;. Since clearly b, (¢>1) are independent, this contradicts F.
(4 and F'= M) First we note that the values m(a) for all m-elements
a are bounded. In fact, if not we may find an infinite sequence (a,)
of m-elements such that m(a,.,)>m(a;). Then (a;) is independent by
Lemma 6. Let a,=J}%a,, and a,,~a,, for every j, j’. Set b,
=Jn2j,;. Clearly b;>b,,, and (b, is indepedent, contradicting F.
Thus, m(a) for m-elements a are bounded. Denote its maximum by
m. Let L>(J,*,a, and assume a,~a,x0 for every 1,¢.' It follows
easily from 4 that a, contains an element af such that m(aj)=1. If
we replace a; by af and each of the other a, by an element contained
in it and projective to af, we may assume with loss of generality
m(a)="-++-=m(a,)=1. From Lemma 7 there exists an m-element b
such that m(b)>k. Therefore m>k and m(L)=m. (M=>F) Let (a,)
be a countable independent set such that a,za,,, for every 7. Then,
for every n there are mutually projective nonzero b,,, 1=1,- -+, n satis-
fying b,,<a,. Since b,, are independent we get m(L)= o, contradicting
M. (4> F) Let (a,) be a countable independent set such that a,za,,,
for every ¢©. Then for every n there exist mutually projective nonzero
b, =1, -+, 2" satisfying b,;<ap, ;. Putec,=U.2%Uirbnand ci=Ua2:
ot by.  Then ¢,~¢, and ¢,_,>¢,J¢/, which contradicts 4.

3. Let 3t be a semisimple I-ring, and Ly, the lattice of all left
(right) ideals of 3t. In a recent paper we have noted that m(Lg) co-
incides with the index of 9. Therefore, as an immediate consequence
of our Theorem we obtain

Corollary 2. Let R be a semisimple I-ring. Then the following
conditions are equivalent:

(a) N is of bounded index.

(b) There is no infinite sequence of nonzero left (right) ideals
I, such that 1,21, P, [, being a left (right) ideal isomorphic to ;.

(e) There is no infinite sequence of monzero left (right) ideals
[, such that the sum >I, is direct and l,,, is isomorphic to a subideal
of L.

For any module M we denote by M* the set of all submoedules
N of M with the property that RN'2=0 for every submodule N'==0
of M.

Lemma 8. Let Q be the minimal injective extension® of a module
M, and € the endomorphism ring of . Then the radical of € is the
set N of all endomorphisms 6 of £ satisfying Ker 8 ¢Q*. Moreover,
G/N 1is isomorphic to the extended centralizer over M and hence is
regular. In case € is semisimple, every submodule 2t of M has the

7) See [9, Lemma 4].
8) See [1, Section 4].
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unique minimal injective extension M contained in Q. N is the sum
of all essential extensions of N in Q.

Proof. If Ker 0¢Q* for §¢€, then Ker (1+6)=0, since Ker (1
Ker (14+6)=0. Hence Im(1+6) (=) is a direct summand of Q and
clearly contains Ker 6 (¢2*); this implies Im (14-60)=2 and 6 is quasi-
regular in €. It is easy to prove that N is a two-sided ideal of € and
that €/N is isomorphic to the extended centralizer® over M. Since
any extended centralizer is regular, €/N is semisimple and N is the

radical of €. Next, assume that € is semisimple, and let % and R’
be minimal injective extensions of N in Q. By N we denote a maxi-

mal submodule disjoint to %. Since M is an essential extension of N,'*

we have N(N°=0. Now, there is an element #¢G such that N°=N’
and MPN)A—0)=0. Clearly RPN°ecQ*, and so 1—FeN, hence 1=4.
Therefore N'=%N.

Proof of Corollary 1. By Lemma 8, i is a regular ring. We

denote the lattice of all principal left ideals of % by Ly. Let (%te,)eLg.
Then the minimal injective extension left ideal of S1%te, is uniquely
determined by Lemma 8, and is clearly the join UJte, of (Jte,). Hence

Ly, is complete. To see the upper continuity of Ly we assume that
(Ne,) is simply ordered. Since [JNe, is an essential extension of > e,
that is, (UMNe,)* 3> Ne,, we have ((URe,) NRS)* 2 (S Re,) NRSf=ST (Re,
NRf) for any RfeLy. Hence (URe,) RS U(Re,NRS), which shows

the upper continuity of Ly. Thus, it follows from Theorem that for Ly
Conditions 4 and M are equivalent. Now, (i)= (ii)= (iii) are known.'?
Levitzki proved that an FI-ring is P-soluble if and only if it satisfies
the D-condition.'® It is not too hard to see that the D-condition for

a regular ring R is equivalent to Condition 4 for L;. On the other
hand, the boundedness of indeces in 3t is equivalent to Condition M

for Ly, and hence also to Condition M for Ly. Therefore we have
(iii) <> (i). The last statement of Corollary 1 follows from [8, Theo-
rem 5], completing the proof.
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