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15. Some Properties of F-spaces

By Takesi ISIWATA
Tokyo Gakugei University, Tokyo
(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1959)

X" is called an F-space provided for any feC(X), P(f)={x;
S(x)>0} and N(f)={x; f(x)<0} are completely separated. X has the
F,-property if the closure of any F,-open subset of X is open. X has
the E,-property if any feB(U) has a continuous extension over X
where U is any F,-open subset of X. Gillman and Henriksen [1] have
proved the interest results on F-spaces; for instance, i) X is ¢-complete
if and only if for any feC(X), P(f) is open; ii) X is an F-space if
and only if any feB(X—N) has a continuous extension over X where
N is any Z-set of X. In general, 1) if X has the F,-property, X is
og-complete [3] and 2) if X has the E,-property, X is an F-space.
If X is normal the converses of the above two statements are true [3].

In §1 we shall study the relations between a given space X and
its Cech compactification (=X) concerning the F,-prop., E,-prop., o-
completeness, or the property of being an F-space. In §2 we shall
consider some questions arising in connection with the theorems in § 1.

1. Theorem 1. The following conditions are equivalent for any
space X: 1) X has the F,-property; 2) any subspace Y of X con-
taining X as a proper subset has the F,-property;, 3) any proper
F,-open subset of X has the F,-property.

Proof. (1—-2). Let V be any F,-open subset of Y. U=V~X
is also F,-open in X and hence U(in X) is open in X. On the other
hand, fX=B(U(in X))~ B(X—Ul(in X)), S(U(in X))~B(X—U(in X))=6
and U(in X)=p(U(in X)). Since X is dense in ¥ and U=X~V and
V is open in Y, we have V(inY)=U(inY)=U(in BX)~Y and hence
V(inY) is open.

(2->3). Let U be a proper F,-open subset of X and let V be
F,-open in U. V is F,-open in X and we put Y =(8X—(V(in X)
—V))—X. Since V is F,-open in Y and Y has the F,-property,
V(inY) is open in Y and hence V(inU)=V(inY)~U is open in U.

(8—1). Let U be any proper F,-open subset of X. Suppose that
UxX and acX—U. There exists feB(X) such that f(a)=0 and

1) A space X considered here is always a completely regular T,-space. The
functions are assumed to be real-valued and C(X)(B(X)) denotes the totality of
(bounded) continuous functions defined on X.
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f@)=1on U. P(f)is F,open in X and P(f)DU. U(in P(f)) is
open in P(f) by (8) and hence U(in X)=U(in P(f)) is open in X.

Theorem 2. The following conditions are equivalent for any
space X: 1) X has the E,-property; 2) any subspace Y of BX con-
taining X as a proper subset has the E,-property; 3) any proper
F.-open subset of X has the E -property.

Proof. (1—-2). Let V be F,-open in Y and geB(V). U=X~V
is F,-open in X. By the assumption, a function f(=g|V) has a con-
tinuous extension 2 over X and hence over fX. h|Y is an extension
of g because U is dense in V.

(2—>3). Let U,V and Y be sets as in the proof (2— 8) in Theorem
1 and feB(V). Then by the assumption, f can be continuously extended
over Y and hence over U.

(8—1). Let U be an F,-open subset of X and feB(U). We take
a point p in U and an open neighborhood V of p contained in U. By
the complete regularity of X, there exists geB(X) such that ¢g>0,
g(p)=0 and g(x)=1 on X—V. Then P(g) is a proper F,-open subset
of X and hence P(g)~U is F,-open in P(g). Therefore f|(P(9)~U)
has a continuous extension % over P(g). Then a function F'(x) defined
by F(x)=h(x) for xe P(g9) and F(x)=f(x) for xeg-(0), is a continuous
extension of f over X.

Theorem 3. The following conditions are equivalent for any
space X: 1) X is an F-space; 2) X is an F-space; 3) P(f) is an
F-space for any feC(X) such that P(f)=X.

Proof. (1< 2) is obtained by Gillman and Henriksen [17].

(1-38). Suppose that P(f)=X and geB(P(f)) and M =P(f)
—Z(g). We shall prove that any ke B(M) can be continuously extended
over P(f). Let ¢=fVO0 on X. Then P(f)=X-—Z(p) and hence g
has a continuous extension g* over X because geB(X—Z(¢)). Since
Z(pg*)=Z ()~ Z(g9*), we have heB(X—Z(pg*)), therefore ~ has a
continuous extension over X and hence over P(f).

(83—>1). Let f*eC(X) and ge B(X—Z(f*)). Since Z(f)=Z(f1),
we assume that f>0. For any (fixed) point ae P(f), there is he B(X)
such that Z(a)=0 and A(x)=1 on Z(f). P(h) is an F-space and g
eB(P(h)—Z(f")) where f'=f|P(f), and hence g has a continuous
extension g’ on P(h). Let us put G(x)=g'(x) for xe P(k) and G(x)=g(x)
for x¢ P(h). Then G(x) is a continuous extension of g over X and
G@)|P(f)=g.

Theorem 4. The following conditions are equivalent for any
space X: 1) X s g-complete; 2) BX 1is g-complete; 8) P(f) is o-
complete for any feC(X) such that P(f)=X.

Proof. (12). The arguments of this proof are essentially the
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same as those used in [7, Theorem 1].

(1-8). Let U=P(f), feC(X). We shall prove that P(g)(in U)
is open in U for every geB(U). Since X is an F-space and U=X
—Z(fV0), g has a continuous extension § over X and P(9)(in X) is
open in X because X is o-complete. On the other hand, since U(in X)
is open, P(g)(in U)= P(g)(in U)~U = P(g)(in X)~U=P(9)(in X)~U
and hence P(g)(in U) is open in U.

(8—>1). Let feC(X), f=0 and U=P(f). If there is a point a
in X—U, then there exists geC(X) such that g(a)=0 and g(x)=1 on
U. By the assumption, P(g) is s-complete and P(f)C P(g) and hence
P(f)(in P(g)) is open in P(g). Since g(P(f))=1, P(f)(in X) is open
in X.

2. Let X be a space having the F,-property and Z any com-
pactification of X. By Theorem 1, it is natural to consider the ques-
tion whether the F,-property for any subspace of Z containing X as
a proper dense subspace implies SX=Z or not.” In the following, we
deal with this question and similar ones; we give negative answers for
these problems. First we shall consider compact subsets in F-spaces.

Theorem 5.° If X is an F-space and A is any compact subset
of X, then A— A, is countably compact where A, is any finite subset
of A.

Proof. It is sufficient to prove that A— A, is countably compact
in case A,={x}; the general case will be treated similarly. Suppose
that there exists a closed set B{x,; n=1,2,---} in A—A, such that
each point x, is an isolated point in B. Since A is compact, we have
B=B-{x}. Let f be a function on B such that f(2;,)=—1/2n and
Sf(®s,.1)=1/(2n+1) and f(x)=0. Since f is continuous on a compact
subset B, f has a continuous extension g over X. Then P(g) and N(g)
are not completely separated. This contradicts the fact that X is an
F-gpace.

Corollary 1. In an F-space, there exist no compact subsets which
are countable.

Corollary 2. If an F-space has a unique structure, then X 1is
countably compact.

From this Corollary 2, X=[1, 21X [1, o] —{(2, @)} is not an F-
space because X has a unique structure but is not countably compact

2) In this question, if ‘‘F,-property’’ is replaced by ‘‘stoneanness’’ this question
is affirmatively solved [7, Theorem 7]. For the special case, we have BX=2Z certainly
because X is always the complement of Z-set of Z where X is a locally compact, o-
compact F-space.

8) This theorem is a generalization of Corollary 2.4 in [1] and Theorem 3 in

[7J.
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where o and 2 are first ordinals of the second and third classes.

It is obvious that if X DY >« and « is a P-point of X, then x is
also a P-point of Y [2]. But the converse is not true in general.*
If Y is a dense subset of X, then the converse is true; this is seen
by the following

Lemma 1. If Y s a dense subspace of X, then every P-point of
Y 4s also a P-point of X.

Proof. Let a be a P-point of Y. If a is an isolated point in Y,
a is also an isolated point in X, and hence we can assume that a is
not isolated. Suppose that {V,; n=1,2,-.:} is a family of neighbor-
hoods (in X) of a. By the regularity of X, there exists a family

{U,; n=1,2,---} of open sets containing a in X such that V,DU, and
U,DU,.,. Since a is a P-point of Y, there exists a neighborhood U

in X of a such that ﬁl(Unﬂ Y)DY ~U. It is well known that Y ~U
DY ~U=X~U=U. Therefore we kave "ﬁll_anU and hence ﬁl V.
DU. This shows that a is a P-point of X.

Lemma 2. If U is an F-open subset of X and x is a P-point
of X, then Udx implies Udzx.

In the following, M is a subspace of 8X containing X. We denote
by Z=M({C}) a space which is obtained by contracting C to one point
c¢=p(C) where C is a closed subset in M—X, and ¢=¢({C}) denotes
a closed continuous mapping of M onto Z such that ¢(x)=2« for x¢C
and ¢(x)=c for zeC.

Theorem 6. Suppose that C is a compact subset of M—X. 1)
Let ¢ be a P-point of Z; if X has the F,-property or is o-complete
respectively, then any subspace Y of Z containing X has the F,-
property or is g-complete respectively. 2) If C comsists of P-points
(and hence C is a finite set [2]), then the point ¢ is a P-point of Z.
In this case, if X is an F-space or has the E,-property respectively,
then any subspace Y of Z containing X is an F-space or has the
E.-property respectively.

Proof. 1) Suppose that X has the F,-property, U is F,-open in Y.
If Y3e¢ then Y can be regarded as a subspace of M and hence, by
Theorem 1, ¢~(Y) has the F,-property. Since ¢|¢~*(Y) is a homeo-
morphism, Y has the F,-property. If Ysc and Us¢, then U(in Y)se
by Lemma 2. Let Q=¢ (U)(in ¢ (Y)). Since (@ CU(inY), we
have @Q~C=0 and @ is open in ¢ }(Y) by the assumption. Since
¢|(¢~(Y)—C) is a homeomorphism of ¢ (Y)—C onto Y—e¢, ¢(Q) is

4) Let N be the set of all natural numbers. BN—N contains P-points, under
the continum hypothesis [6], but it is easily seen that every point in BN—N is not
a P-point of BN.
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open and closed, and we have ¢(@)=U(in Y), i.e. U(in Y) is open. If
Ysc and Use, then the openness of U(in Y) is obvious. In case X
is o-complete, our assertion will be obtained replacing U by P(f) for
any feC(Y).

2) Suppose that ¢ is not a P-point of Z. Let U be any F,-open
subset of Z such that U(in Z)s¢ and Udec. V=9 (U) is also F,-open
in M and hence we have V(in M)~C=6 by Lemma 2. Since ¢ is a

closed mapping and ¢(C)=c, we have ¢(V(in M)) is a closed subset of
Z which does not contain the point ¢. This contradicts the fact that

U(in Z)=¢(V(in M))sc. (The converse is not true in general; see
Example below.)

Next, suppose that X is an F-space and feC(Y)and P(f)—N(f)$ec.
f can be regarded as a function on ¢ (Y). By Lemma 2, ((P(f)(in
(Y)),~N(f)(in o }(Y)))~C=0. Since C is a finite subset and ¢~ (Y)
is an F-space we can construct ge B(¢~'(Y)) such that g(x)=—1 on
P(f)(in YY), g(x)=1 on N(f)(ino X(Y)), g(x)=0 on C and —1<g
<1. Then we have h=g¢ 'eC(Y) because ¢ is a closed mapping and
¢(C)=c. This shows that P(f) and N(f) are completely separated.
In case X has the E,-property, our assertion will be obtained by an
analogous method.

Theorem. 7. Suppose that C={a,b}. Then we have 1) if X is
a-complete, a is a P-point of M and b is not a P-point of M, then
Z 1s mot a-complete; 2) if X has the E,-property, a is a P-point of M
and b is not a P-point of M, then any subspace N of Z containing
X has the E.-property; 8) if X is an F-space and both a and b are
not P-point of M, then Z is not an F-space.

Proof. 1) Thereis feB(M) such that P(f)$b but P(f)(in M)>b
and P(f)%a, f(a)=0. Since ¢ is a closed mapping, f can be regarded
as a function on Z. Then P(f)(in Z)>¢ but ¢ is not an inner point of
P(f)(in Z) and hence Z is not o-complete.

2) Let U be an F,-open subset of N, feB(U). We regard f as
a function in B(¢~!(U)), and hence f has a continuous extension g
over ¢ }(N). If either i) Usc or ii)) Usc and g(a)=g(b), it is easy
to see that g is considered as a continuous function on N. If Usec
and g(a)==g(b), there is an open neighborhood W of a such that
W~ (U)(in ¢ *(N))=0 because a is a P-point of M. There exists
heB(o~Y(N)) such that (a)=1, h(z)=0 on ¢ *(U)(in ¢ (NN)) and h(b)
=0. Then k(x)=r(x)+f(O)(x)eBle~*(N)) and k(a)=Fk(), and hence
k can be considered as a function in B(Z) and k|U=f. This means
that Z has the E,-property.
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3) This follows from the fact that there exists feB(M) such

that 0<f <1, f(a)=f(0)=0 and P(f)(in M)sa, N(f)(in M)>b.

Remark. It is easily seen that Theorems 6 and 7 are true if M
is any space which contains X as a dense subset (but is not necessarily
contained in 8X) and any subspace containing X of which is an F-space
or s-complete or has the F,- or E,-property respectively.

Example. Let L=[1, 2] be a space such that every point a« (5= 2)
is an isolated point and a neighborhood of £ is an interval in the usual
sense. Then L is a normal P-space, and hence L has the F,-property.
It is well known that 2 is a P-point of L [1, Example 8.7]. There-
fore 2 is a P-point of SL by Lemma 1. Let X=[1, 2) be a discrete
space. Then BX has not P-points except points of X (see [4, 5.1] or
[5, Th. 45]). The identical map of X onto X has a continuous
extension ¢ of BX onto SL. We shall show that if 22, then ¢ '(z)
consists of only one point, and BX—¢~*(2) s homeomorphic to BL— Q.
Suppose that z+=02. £ has a neighborhood U in BL which is disjoint
from 2z and L~UD{a; a>a,} for suitable ordinal @y, V=L—U~L
is open and closed in X and in L. Hence 8V is considered as an open
and closed subset in SX and in BL. This shows that our assertions
are true.
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