29. On Schlicht Functions. I

By Tetsujiro Kakehashi

(Comm. by K. Kunugi, m.J.A., March 12, 1959)
It is known that $w=\frac{1+z}{1-z}$ is a schlicht (convex) function with a positive real part for $|z|<1$, and, when $|z|=1, w$ corresponds to the imaginary axis. Hence, for $|z|<1,\left(\frac{1+z}{1-z}\right)^{2}$ is a schlicht function with the cut on the negative real axis. For any real number λ, a function

$$
\left[\frac{1+z}{1-z}+i \lambda\right]^{2} ; \quad|z|<1
$$

is univalent, and for any positive number $\mu \geqq 0$,

$$
\left\{\left[\frac{1+z}{1-z}+i \lambda\right]^{2}+\mu\right\}^{\frac{1}{2}} ; \quad|z|<1
$$

is a schlicht function with positive real part. For any two real numbers λ_{1} and λ_{2},

$$
\left[\left\{\left[\frac{1+z}{1-z}+i \lambda_{1}\right]^{2}+\mu\right\}^{\frac{1}{2}}+i \lambda_{2}\right]^{2}
$$

is univalent for $|z|<1$.
In such a way, we can form a class of schlicht functions which have a certain type of slits. That is, for any set of real numbers $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$, and for any positive numbers $\mu_{1}, \mu_{2}, \cdots, \mu_{k-1}$, a function defined by

$$
\begin{equation*}
\left[\cdots\left\{\left[\left\{\left(\frac{1+z}{1-z}+i \lambda_{1}\right)^{2}+\mu_{1}\right\}^{\frac{1}{2}}+i \lambda_{2}\right]^{2}+\cdots+\mu_{k-1}\right\}^{\frac{1}{2}}+i \lambda_{k}\right]^{2} \tag{1}
\end{equation*}
$$

is analytic and univalent for $|z|<1$, and the values form a region with a tree-shaped slit.

The chief object of this paper is to give properties of coefficients obtained by Taylor expansion of such a function.

Let $F_{k}(z)$ be denoted by the function (1), we have

$$
\left\{\begin{align*}
& F_{0}(z)= \frac{1}{(1-z)^{2}}(1+z)^{2} \equiv \frac{1}{(1-z)^{2}}\left[\varphi_{0}(z)\right]^{2} \tag{2}\\
& F_{1}(z)= \frac{1}{(1-z)^{2}}\left[1+z+i \lambda_{1}(1-z)\right]^{2} \equiv \frac{1}{(1-z)^{2}}\left[\varphi_{1}(z)\right]^{2} \\
& F_{k}(z)= \frac{1}{(1-z)^{2}}\left[\cdots\left\{\left[1+z+i \lambda_{1}(1-z)\right]^{2}+\mu_{1}(1-z)^{2}\right]^{\frac{1}{2}}+\cdots\right. \\
&\left.+i \lambda_{k}(1-z)\right]^{2} \equiv \frac{1}{(1-z)^{2}}\left[\varphi_{k}(z)\right]^{2} \\
& \cdot \cdot
\end{align*}\right.
$$

If we put

$$
\left\{\begin{array}{l}
\varphi_{k}(z) \equiv \alpha_{k 0}+\alpha_{k 1} z+\alpha_{k 2} z^{2}+\cdots, \tag{3}\\
F_{k}(z) \equiv A_{0}^{(k)}+A_{1}^{(k)} z+A_{2}^{(k)} z^{2}+\cdots,
\end{array}\right.
$$

we have

At first we show the next
Theorem 1. For any set of real numbers $\lambda_{1}, \lambda_{2}, \cdots$, any set of positive numbers μ_{1}, μ_{2}, \cdots, and for any $k=0,1,2, \cdots$, we have $\left|A_{1}^{(k)}\right| \geqq 4$,
where $A_{1}^{(k)}$ is defined by (2) and (3). The equality is valid only when $k=0$.

This theorem can be proved by mathematical inductions. $A_{1}^{(0)}=4$ is clear by $\alpha_{00}=\alpha_{01}=1$. And $A_{1}^{(1)}=4\left(1+i \lambda_{1}\right)$ satisfies the theorem, and $\alpha_{10}=1+i \lambda_{1}$ has the positive real part 1.

For a function

$$
\varphi(z)=\alpha_{0}+\alpha_{1} z+\alpha_{2} z^{2}+\cdots
$$

and for any real number λ, we have

$$
\begin{aligned}
{[\varphi(z)} & +i \lambda(1-z)]^{2}=\left(\alpha_{0}+i \lambda\right)^{2}+2\left(\alpha_{0}+i \lambda\right)\left(\alpha_{1}-i \lambda\right) z \\
& +\left\{2\left(\alpha_{0}+i \lambda\right) \alpha_{2}+\left(\alpha_{1}-i \lambda\right)^{2}\right\} z^{2}+\left[2\left(\alpha_{0}+i \lambda\right) \alpha_{3}+2\left(\alpha_{1}-i \lambda\right) \alpha_{2}\right] z^{3}+\cdots .
\end{aligned}
$$

If we put

$$
\begin{aligned}
F(z) & =\frac{1}{(1-z)^{2}}[\varphi(z)+i \lambda(1-z)]^{2} \\
& \equiv A_{0}+A_{1} z+A_{2} z^{2}+\cdots,
\end{aligned}
$$

we have

$$
\begin{gathered}
A_{0}=\left(\alpha_{0}+i \lambda\right)^{2} \\
A_{1}=2\left(\alpha_{0}+i \lambda\right)\left(\alpha_{0}+\alpha_{1}\right) .
\end{gathered}
$$

Now we assume that, for any real number λ, the real part of α_{0} is positive and the absolute value of A_{1} is not less than 4. Let, for any real number λ^{\prime} and any positive number $\mu, G(z)$ be a function defined by

$$
\begin{aligned}
G(z) & =\frac{1}{(1-z)^{2}}\left[\left\{[\varphi(z)]^{2}+\mu(1-z)^{2}\right\}^{\frac{1}{2}}+i \lambda^{\prime}(1-z)\right]^{2} \\
& \equiv \frac{1}{(1-z)^{2}}\left[\left(\beta_{0}+\beta_{1} z+\beta_{2} z^{2}+\cdots\right)+i \lambda^{\prime}(1-z)\right]^{2} \\
& \equiv B_{0}+B_{1} z+B_{2} z^{2}+\cdots .
\end{aligned}
$$

From the relation

$$
\left(\alpha_{0}+\alpha_{1} z+\alpha_{2} z^{2}+\cdots\right)^{2}+\mu(1-z)^{2}=\left(\beta_{0}+\beta_{1} z+\beta_{2} z^{2}+\cdots\right)^{2}
$$

we have

$$
\left\{\begin{array}{l}
\beta_{0}^{2}=\alpha_{0}^{2}+\mu \\
\beta_{0} \beta_{1}=\alpha_{0} \alpha_{1}-\mu \\
2 \beta_{0} \beta_{2}+\beta_{1}^{2}=2 \alpha_{0} \alpha_{2}+\alpha_{1}^{2}+\mu \\
2 \beta_{0} \beta_{3}+2 \beta_{1} \beta_{2}=2 \alpha_{0} \alpha_{3}+2 \alpha_{1} \alpha_{2} \\
\quad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
\sum_{\substack{i+j=n \geq 3 \\
i, j=0,1,2 \\
\hline}} \beta_{i} \beta_{j}=\sum_{i+j=n \geq 3} \alpha_{i} \alpha_{j},
\end{array}\right.
$$

and hence

$$
B_{1}=2\left(\beta_{0}+i \lambda\right)\left(\beta_{0}+\beta_{1}\right)=2 \alpha_{0}\left(1+\frac{i \lambda^{\prime}}{\sqrt{\alpha_{0}^{2}+\mu}}\right)\left(\alpha_{0}+\alpha_{1}\right)
$$

where the absolute value of $2\left(\alpha_{0}+i \lambda\right)\left(\alpha_{0}+\alpha_{1}\right)$ is not less than 4 , and α_{0} has a positive real part.

The minimum absolute value of $\alpha_{0}+i \lambda$ is reached by the positive real part of α_{0}, and when λ^{\prime} varies on the real axis, the minimum absolute value of $1+\frac{i \lambda^{\prime}}{\sqrt{\alpha_{0}^{2}+\mu}}$ is not less than absolute value of $1+\frac{i \lambda}{\alpha_{0}}$. Accordingly, the absolute value of $\alpha_{0}\left(1+\frac{i \lambda^{\prime}}{\sqrt{\alpha_{0}^{2}+\mu}}\right)$ is greater than the real part of α_{0} when $\mu>0$, and then, the absolute value of the coefficient B_{1} is greater than 4. It is easily verified that the real part of β_{0} is positive from $\beta_{0}=\sqrt{\alpha_{0}^{2}+\mu}$. Thus, the theorem has been established.

Next, we consider an asymptotic relation of a coefficient $A_{n}^{(k)}$ when n approaches to infinity.

From the relation $\varphi_{k}(1)=2$ for every positive integer k, the following equation

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(A_{n}^{(k)}-A_{n-1}^{(k)}\right)=\left[\varphi_{k}(1)\right]^{2}=4 \tag{5}
\end{equation*}
$$

follows at once from (4). For an arbitrary small positive number ε and a sufficiently large fixed integer n_{0}, we can verify

$$
\left|A_{n}^{(k)}-A_{n_{0}}^{(k)}-4\left(n-n_{0}\right)\right|<\left(n-n_{0}\right) \varepsilon
$$

from (4), and hence we have

$$
\lim _{n \rightarrow \infty} \frac{A_{n}^{(k)}}{n}=4
$$

Now the following theorem follows at once.
Theorem 2. For any positive integer $k \neq 0$, we have a following asymptotic relation

$$
\lim _{n \rightarrow \infty} \frac{A_{n}^{(k)}}{n A_{1}^{(k)}}=\kappa ; \quad|\kappa|<1 .
$$

Remark. This theorem means that, for n sufficiently large, we have

$$
\left\{\begin{array}{l}
\left|\frac{A_{n}^{(k)}}{A_{1}^{(k)}}\right|<n ; \quad k \neq 0 \\
\frac{A_{n}^{(0)}}{A_{1}^{(0)}}=n .
\end{array}\right.
$$

