23. Supplement to "Homomorphisms of a Left Simple Semigroup onto a Group"

By Tôru Saitô
Tokyo Gakugei University
(Comm. by K. Shoda, m.J.A., March 12, 1959)

In this supplementary note of [1], we show that Theorem 3 in [1] holds even when we omit the condition that ' N contains the core of S^{\prime} in its assumption, and that, indeed, any normal and left unitary subsemigroup of a left simple semigroup S contains the core of S.

Let N be a normal and left unitary subsemigroup of a left simple semigroup S. Then, without the assumption that N contains the core of S, from Lemma 6 onwards in [1], we can argue in the same way as in [1], except the parts which we shall discuss in the following.

At first, we show that Lemma 7, asserting that $a \in N a$ for any $a \in S$, holds in this case. In fact, we take an element $x \in N$. By the left simplicity of S, there exist two elements y and n of S such that $y x=a$ and $n x=x$. By Lemma 6, we have $n \in N$. Moreover, since N is normal, there exists an element $n^{\prime} \in N$ such that $y n=n^{\prime} y$. Then we have

$$
a=y x=y n x=n^{\prime} y x=n^{\prime} a \in N a .
$$

Also, in the proof of Lemma 10 in [1], the statement " Then there exists an element $u \in S$ such that $u a=a$. The element u belongs to U and so belongs to $N^{\prime \prime}$ is replaced in this case by the statement "Then by Lemma 7, there exists an element $u \in U$ such that $a=u a$ ".

After discussing in the same way as in [1] except the parts abovementioned, we obtain Theorem 3 in [1] in a better form:

Theorem 3'. If N is a normal and left unitary subsemigroup of S, then there exists a homomorphism θ of S onto a group such that the kernel of θ is N.

As an immediate consequence of the above theorem, we obtain the following

Theorem 4. If N is a normal and left unitary subsemigroup of S, then N contains the core of S.

In fact, by Theorem 3^{\prime}, there exists a homomorphism θ of S onto a group G such that the kernel of θ is N. But by Theorem 2 of [1], N, being the kernel of θ, contains the core of S.

Reference

[1] T. Saito: Homomorphisms of a left simple semigroup onto a group, Proc. Japan Acad., 34, 664-667 (1958).

