52. On Locally Q-complete Spaces. I

By Takesi ISIWATA Tokyo Gakugei University (Comm. by K. KUNUGI, M.J.A., May 7, 1959)

If Z is a Q-space containing X as a dense subspace, then we call Z a Q-completion of $X^{(1)}$ X is said to be locally complete with respect to the structure²⁾ μ of X if for any point $x \in X$, there is a neighborhood whose closure is complete with respect to μ . If μ is the structure generated by C(X),²⁾ then we say that X is locally Q-complete. X is called a local Q-space if for any point $x \in X$, there is a neighborhood of x whose closure is a Q-space. It is obvious that any Q-space is locally Q-complete and any locally Q-complete space is a local Q-space. If X is normal and is a local Q-space, then X is locally Q-complete.

In this paper, we shall establish some relations between a locally Q-complete space and its Q-completion, which are analogous to the relations between a locally compact space and its compactification.

Lemma 1. Let B be a closed subset of X and Z a space obtained from X by contracting B to a point. If either X is normal³⁾ or B is compact, then Z is completely regular.

This lemma is easily proved by the normality of X or the compactness of B respectively. In general, the space Z mentioned above is not necessarily completely regular.

Lemma 2. Let Y be a Q-space and F a closed subset of Y, and Z be a space obtained from Y by contracting F to a point p in Y. If Z is completely regular, then $X=Z-\{p\}$ is locally complete with respect to the structure generated by $C_0=\{f; f \in C(Z), f(p)=0\}$.

Proof. We notice first that C_0 is considered as a subring C_1 of C(Y) whose elements vanish at every point of $B=F \subseteq \{p\}$. For any point x in X, there is a neighborhood V such that $\overline{V}(\text{in } Z) \ni p$ in Z. To prove that $\overline{V}(\text{in } Z)$ is complete with respect to the structure generated by C_0 , it is sufficient to prove that $U=\overline{V}(\text{in } Z)$, considered as a closed subset of Y, is complete with respect to the structure μ

¹⁾ A space considered here is always a completely regular T_1 -space. C(X) denotes the totality consisting of all real-valued continuous functions defined on X, and B(X) denotes a subset of C(X) consisting of all bounded functions.

²⁾ A structure of X considered here means a uniformity of X which agrees the given topology of X. A structure generated by C, which is a subset of C(X), is a structure given by the following uniform neighborhoods: $W(x; f_1, \dots, f_n, \varepsilon) = l\{y; | f_i(x) - f_i(y) | < \varepsilon\}$ where $f_i \in C$ and ε is an arbitrary positive real number.

³⁾ In case X is normal, Z is normal.

generated by C_1 . Let $\{a_{\alpha}; a_{\alpha} \in U, \alpha \in \Gamma\}$ be a Cauchy directed set with respect to μ , and $f_1, f_2, \dots, f_n \in C(Y)$, $\varepsilon > 0$. Since Z is completely regular, there exists $f \in C_1$ such that f(B)=1, f(U)=1 and $0 \le f \le 1$. Then we have $f_i f \in C_1$ for every *i*. Since $\{a_{\alpha}; \alpha \in \Gamma\}$ is a Cauchy directed set, there is a point q in U and an index α_0 such that

$$W_1 = W(q; f_1 f, f_2 f, \dots, f_n f, \varepsilon)$$

= {x; | f_if(x) - f_if(q) | < \varepsilon, x \in U} \cong a_\alpha for \alpha > \alpha_0.

By the method of the construction of f, we have

 $W(q; f_1, f_2, \cdots, f_n, \varepsilon) \ni a_\alpha$ for $\alpha > \alpha_0$.

This means that $\{a_{\alpha}; \alpha \in \Gamma\}$ is a Cauchy directed set with respect to the structure generated by C(Y). Since Y is a Q-space, $\{a_{\alpha}; \alpha \in \Gamma\}$ must converge to a point in U because U is closed in Y. Thus \overline{V} (in Z) is complete with respect to the structure generated by C_0 .

Since $C(\overline{V}(\text{in } Z))$ can be considered as a set containing C_0 as a subset, the space X mentioned in Lemma 2 is locally Q-complete, and hence is a local Q-space.

Theorem 1. Let Y, F, p, Z, X and C_0 be the same as in Lemma 2. If either F is compact or Y is normal, then X is locally complete with respect to the structure generated by C_0 , and hence X is a local Q-space. Moreover Z is a Q-space.

Proof. The first part of theorem is an immediated consequence of Lemmas 1 and 2, and hence we shall prove the latter part. C(Z)can be considered as a subring of $C(\nu X)^{4}$ consisting of all functions which take a constant value on *B* (as in Lemma 2). Let $(a_{\alpha}; \alpha \in \Gamma)$ be a Cauchy directed set with respect to the structure μ generated by C(Z). For any $f_1, f_2, \dots, f_n \in C(Z)$ and any $\varepsilon > 0$, there exist a point qand an index α_0 such that

 $U = W(q; f_1, f_2, \cdots, f_n, \varepsilon) \ni a_\alpha \text{ for } \alpha > \alpha_0.$

If $|f_i(p)-f_i(q)| < \varepsilon/2$ for each *i*, we have $W(p; f_1, f_2, \dots, f_n, \varepsilon) \ni a_\alpha$ for $\alpha > \alpha_0$. This means that $\{a_\alpha; \alpha \in \Gamma\}$ converges to *p*. Now suppose that there are ε and some f_i such that $|f_i(p)-f_i(q)| \ge \varepsilon/2$. Then $\overline{U}(\text{in } Z)$ is disjoint from the point *p*, and hence $\overline{U}(\text{in } Z)$ is complete with respect to μ , because $\overline{U}(\text{in } Z)$ is complete with respect to the structure generated by C_0 as easily seen in the proof of Lemma 2. Thus $\{a_\alpha; \alpha \in \Gamma\}$ converges to a point in $\overline{U}(\text{in } Z)$. Therefore Z is a Q-space.

Let μ be the structure generated by a subset of C(X) and \widetilde{X} be the completion of X with respect to the structure μ ; then we can not

⁴⁾ For a space X there exists a unique space νX which is completely determined, up to homeomorphism by the following properties: (1) νX is a Q-space, (2) νX contains X as a dense subspace, and (3) every function in C(X) can be continuously extended over νX (E. Hewitt: Rings of real-valued continuous functions I, Trans. Amer. Math. Soc., **64**, 45-99 (1948)).

T. ISIWATA

conclude that X is open in \tilde{X} even if X is a local Q-space. Such an illustration is given by the set of all rational numbers with the structure defined by the usual distance function. The completion \tilde{X} of X is the space of all real numbers with the usual metric, and X is not open in \tilde{X} even if X is a Q-space (and hence X is local Q-space). The openness of X in \tilde{X} will be investigated in Theorems 2,3 and 4.

Lemma 3. If $\nu X - X$ is closed in νX , then $Y = (\nu X - X)^{\beta} \subseteq X$ is a Q-space.

Proof. Now suppose that Y is not a Q-space and $b \in \nu Y - Y$. $X \subset Y \subset \beta X$ implies that νY is contained in βX . By the definition of νY , any function of C(Y) is continuously extended over b. But we shall prove that this is a contradiction, that is, there is a function of C(Y) which is not continuously extended over b. Since $\nu X \Rightarrow b$, there is a function f of C(X) which is not continuously extended over b. On the other hand, the compactness of $(\nu X - X)^{\beta}$, which is disjoint from X, implies that there exists a (bounded) function g of $C(\beta X)$ such that g vanishes on some neighborhood $U(\text{in } \beta X)$ of B and g=1on some neighborhood $V(\text{in } \beta X)$ of b. Then

$$h = \begin{cases} g \text{ on } U \\ gf \text{ on } X - U \end{cases}$$

is a continuous function defined on Y. But gf is equal to f on $V \cap X$ and it is not bounded on $V \cap X$, and hence h is not continuously extended over b. Thus we have $\nu Y = Y$, that is, Y is a Q-space.

A one-point Q-completion of X which is not a Q-space is a Qspace Z such that Z contains X as a dense subset and Z-X consists of only one point. A one-point Q-completion of a locally Q-complete space which is not a Q-space is not necessarily unique. Such an illustration is given by a locally compact space X which is not a Qspace. A one-point compactification of X is a one-point Q-completion of X. On the other hand a Q-space Z obtained in $(2\rightarrow 3)$ of Theorem 2 is so also. As easily seen from the proof of $(2 \rightarrow 3)$ of Theorem 2, if X is a locally compact space which is not a Q-space, and βX - $((\nu X - X)^{\beta} \subset X)$ is not a finite set, then there exist infinitely many one-point Q-completion of X. For any $b \in \beta X - ((\nu X - X)^{\beta} \subset X)$, $X \subseteq (\nu X - X)^{\beta} \subseteq \{b\}$ becomes a Q-space by the same method as in the proof of Lemma 3. We replace Y, F and p as in Theorem 1 respectively by $X \smile (\nu X - X)^{\beta} \smile \{b\}$, $(\nu X - X)^{\beta} \smile \{b\}$ and b respectively. Then the space Z is a non-point Q-completion of X. We shall say Z obtained in $(2 \rightarrow 3)$ of Theorem 2, a natural one-point Q-completion of X.

Theorem 2. The following conditions for a non Q-space X are equivalent:

1) X is locally Q-complete,

- 2) X is open in νX ,
- 3) there is a one-point Q-completion of X.

Proof $(1 \rightarrow 2)$. We suppose that $B = \nu X - X$ is not void and is not closed in νX . There is a neighborhood $\overline{V}(\text{in }\nu X)$ of a point p in $\overline{B}(\text{in }\nu X) \frown X$ such that $\overline{V}(\text{in }X)$ is complete with respect to the structure μ generated by C(X), and $\overline{V}(\text{in }X)$ contains a direct set $\{a_{\alpha}; \alpha \in \Gamma\}$ which converges to p where $a_{\alpha} \in U = V \frown X$ for each $\alpha \in \Gamma$. Since $\{a_{\alpha}; \alpha \in \Gamma\}$ is a Cauchy directed set in U with respect to the structure μ , there is a point x such that $\{a_{\alpha}; \alpha \in \Gamma\} \rightarrow x \in \overline{U}(\text{in }X)$. This is a contradiction, and hence B must be closed in νX .

 $(2 \rightarrow 3)$. Suppose that $B = \nu X - X$ is closed in νX . Now we consider νX as a subspace of $\beta X (=$ the Čech compactification of X). Then $\overline{B}(\operatorname{in} \beta X) = B_0$ is compact and is disjoint from X by a closedness of B. We replace Y, F and p as in Theorem 1 respectively by $\nu X \smile B_0, B_0$ and a point p in B_0 respectively. Then $\nu X \smile B_0$ is a Q-space by Lemma 3 and the space Z as in Lemma 2 is completely regular. On the other hand, Z can be considered as a continuous image of νX under a mapping $\varphi \psi$ where ψ is an identical mapping from νX into $\nu X \smile B_0$ and φ is a mapping from $\nu X \smile B_0$ onto Z such that $\varphi(x) = x$ for $x \notin B_0$ and $\varphi(x) = p$ for $x \in B_0$. Therefore, by Lemmas 1 and 2, Z is a Q-space and $Z = X \smile (p)$, i.e. Z is a (natural) one-point Q-completion of X.

 $(3 \rightarrow 1)$. Since X has a one-point Q-completion Z, it is obvious that X is open in the space Z. By Lemma 2 $X=Z-\{p\}$ is locally complete with respect to the structure generated by a subset consisting of functions which vanish at the point p. This subset is a subset of C(Z), and hence X is locally Q-complete.

(1) and (2) in Theorem 2 are generalized in the following form:

Theorem 3. Suppose that μ is a complete structure of X and Y is a subspace of X, then Y is open in X if and only if Y is locally complete with respect to the structure μ .

Proof. Suppose that Y is open in X. For any point y in Y we take a neighborhood U whose closure in X is disjoint from X-Y. Then it is easily verified that $\overline{U}(\text{in } X)$ is complete with respect to the structure μ .

Conversely, if B=X-Y is not closed, it is easily seen that there are a point p in Y such that $p \in (\overline{B}(\text{in } X)-B)$ and a neighborhood V(in X) of p such that $\overline{V}(\text{in } Y)$ is not complete with respect to the structure μ , by the analogous method of the proof of $(1\rightarrow 2)$ in Theorem 2.

Corollary. If X is a Q-space, then any open subset of X is locally Q-complete, and hence a local Q-space.

No. 5]

Next we shall give the relations between the local compactness and local completeness.

Theorem 4. The following conditions are equivalent:

1) X is locally compact,

2) X is open in any its Q-completion,

3) X is locally complete with respect to the structure generated by any subset of C(X).

Proof $(1 \rightarrow 2)$. Let Z be any Q-completion of X. Since X is locally compact, for any point x of X, there is a compact neighborhood of x contained in X. On the other hand, any compact space has an only one structure which is complete. Therefore, X is open in Z by Theorem 3.

 $(1 \rightarrow 2)$. Let μ be a structure of X generated by any subset of C(X), and Y be a completion of X with respect to the structure μ . Since Y is complete with respect to μ , Y is a Q-space, and hence Y is a Q-completion of X. By the assumption X is open in Y. On the other hand, since μ is regarded as a complete structure of Y, X is locally complete with respect to the structure μ by Theorem 3.

 $(3 \rightarrow 1)$. βX is a Q-completion of X with respect to the structure generated by B(X). By the assumption, X is locally complete with respect to the structure generated by B(X), and hence, by Theorem 3, X is open in βX . Therefore X is locally compact.