51. On Extreme Elements in Lattices

By Yatarō Matsushima
Gunma University, Maebashi
(Comm. by K. Kunugi, m.J.A., May 7, 1959)

In a series of papers [2-6] we have studied the concept of B covers and B^{*}-covers in lattices. $B(a, b)=\{x \mid a x b\}, B^{*}(a, b)=\{y \mid a b y\}$, where $a x b$ means that $x=(a \smile x) \frown(b \smile x)=(a \frown x) \smile(b \frown x)$. $B(a, b)$ is called the B-cover of a and b. We shall say that an element e of a lattice L is an extreme element to an element x of L (or e is extreme to x) if $B^{*}(x, e)=e$. An element e is called extreme if it is extreme to some element of L. By $(a, b) E$ we shall mean that b is extreme to a (that is, $B^{*}(a, b)=b$). We shall call (a, b) an extreme pair when $(a, b) E$ and $(b, a) E$; we denote it by $(a, b) E_{s}$.

If $(a, b) E_{s}$ and a and b are comparable, then (a, b) equals (O, I). Elements O, I satisfying $O x I$ for all x are called "extreme" by G. Birkhoff [1]. If a and b are complemented, then $(a, b) E_{s}$ by our definition [Theorem 1]. In Theorem 2, we shall give a representation of a Boolean algebra by maximal extreme B-covers. If $(a, b) E$, then we shall be able to find out an extreme pair $\left(a_{n}, b\right) E_{s}$ by Theorem 4. If the space of a topological lattice is compact, then we shall call this space a compact lattice. After Birkhoff [1], a chain is complete if and only if it is topologically compact. If we denote by $E(a)$ the set of all elements which are extreme to an element a in a compact lattice, then we shall find some interesting properties of $E(a)$ [Theorems 7 and 8], and we shall prove that a compact extreme lattice which consists of extreme elements is a complemented lattice [Theorem 9].

Theorem 1. If a and a^{\prime} are complemented in a lattice, then (a, a^{\prime}) E_{s}.

Proof. If $a a^{\prime} x$, then we have $a^{\prime}=\left(a \frown \alpha^{\prime}\right) \smile\left(\alpha^{\prime} \frown x\right)=a^{\prime} \frown x, a^{\prime}=$ $\left(a \smile a^{\prime}\right) \frown\left(a^{\prime} \smile x\right)=a^{\prime} \smile x$ from $a \frown a^{\prime}=0, a \smile a^{\prime}=I$, and hence we have $a^{\prime}=x$, thus we have $B^{*}\left(a, a^{\prime}\right)=\alpha^{\prime}$. Similarly we have $B^{*}\left(a^{\prime}, a\right)=a$. Hence we have $\left(a, a^{\prime}\right) E_{s}$. The converse of this theorem is not always true.

Lemma 1. $B(a, b)=B(a \frown b, a \smile b)$ in a distributive lattice.
Proof. This is proved by [3, Theorem 3].
Lemma 2. In a Boolean algebra L, if $(a, b) E_{s}$, then $a \cup b=I$, $a \frown b=0$.

Proof. Let a^{\prime} be the complement of a, then $B\left(a, a^{\prime}\right)=B\left(a \frown a^{\prime}\right.$, $\left.a \smile a^{\prime}\right)=B(O, I)=L$ by Lemma 1. Hence $b \in B\left(a, a^{\prime}\right)$, that is, $a b a^{\prime}$.

Accordingly if $(a, b) E_{s}$, then $b=\alpha^{\prime}$.
Definition. $\quad B(a, b)$ is called a maximal extreme B-cover if $(a, b) E_{s}$ and if there exists no extreme B-cover $B(c, d)$ such that $B(c, d) \supset B(a, b)$ but neither $B(a, b)=B(c, d)$ nor $B(c, d)=L$.

Theorem 2. In a Boolean algebra L, any extreme B-cover is a maximal extreme B-cover and $E(L)=L=B\left(a, a^{\prime}\right)$, where $E(L)$ is the set of extreme elements of L, and a^{\prime} is the complement of a.

Proof. This is proved by Theorem 1 and Lemma 2.
Lemma 3. In a lattice axb implies $a \smile b \geqq x \geqq a \frown b$.
Proof. Since $x=(a \smile x) \frown(b \smile x) \geqq x \smile(a \frown b) \geqq x$ we have $x \smile(a \frown b)$ $=x$, hence $x \geqq a \frown b$. Similarly we have $a \smile b \geqq x$.

Lemma 4. acb implies $B^{*}(a, b) \subset B^{*}(c, b)$ in a lattice.
Proof. $a c b$ and $a b x$ imply $c b x$ by [3, Lemma 4].
Lemma 5. $\quad B^{*}(a, b)=B^{*}(a \smile b, b) \frown B^{*}(a \frown b, b)$ in a lattice.
Proof. Since $a \smile b \in B(a, b)$ we have $B^{*}(a, b) \subset B^{*}(a \smile b, b)$ by Lemma 4. Similarly $B^{*}(a, b) \subset B^{*}(a \frown b, b)$. Conversely if x belongs to $B^{*}(a \smile$ $b, b)$ and $B^{*}(a \frown b, b)$, then $x \in B^{*}(a, b)$.

Lemma 6. If $x \in B^{*}(a, b)$, then $x \in B^{*}\left(a^{\prime}, b\right)$ for any a^{\prime} such that $a \smile b \geqq a^{\prime} \geqq a \frown b$.

Proof. $\quad B^{*}\left(a^{\prime}, b\right)=B^{*}\left(a^{\prime} \smile b, b\right) \frown B^{*}\left(a^{\prime} \frown b, b\right), B^{*}(a, b)=B^{*}(a \smile b, b) \frown$ $B^{*}(a \frown b, b)$ by Lemma 5, but $B^{*}(a \smile b, b) \subset B^{*}\left(a^{\prime} \smile b, b\right), B^{*}(a \frown b, b) \subset$ $B^{*}\left(a^{\prime} \frown b, b\right)$ by Lemma 4 ; hence we have $B^{*}(a, b) \subset B^{*}\left(a^{\prime}, b\right)$.

Lemma 7. If $(a, b) E$, then $(c, b) E$ for any c such that $c \smile b \geqq a$ $\smile b, c \frown b \leqq a \frown b$.

Proof. As in the proof of Lemma 6, we have $b \in B^{*}(c, b) \subset B^{*}(a, b)$ $=b$, and hence $B^{*}(c, b)=b$, that is, $(c, b) E$.

Now we shall write $(a, b) E^{\prime}$ when b is not extreme to a.
Theorem 3. In any lattice
(1) if $\left(a^{\prime}, b\right) E,\left(b^{\prime}, a\right) E$ for $a^{\prime}, b^{\prime} \in B(a \frown b, a \smile b)$, then we have (a, b) E_{s};
(2) if b is not extreme for some c satisfying $c \smile b \geqq a \smile b, c \frown b$ $\leqq a \frown b$, then $(a, b) E^{\prime}$.

Proof. (1) If ($\left.a^{\prime}, b\right) E$ for $a^{\prime} \in B(a \frown b, a \smile b)$, then we have $(a, b) E$ by Lemma 7, similarly we have ($b, a) E$. (2) is proved immediately from Lemma 6.

Theorem 4. In a lattice if $(a, b) E$ and $B^{*}(b, a) \ni a_{1} \neq a$, then we have $\left(a_{1}, b\right) E . \quad$ Moreover if there exists $a_{2} \neq a_{1}$ such that $B^{*}\left(b, a_{1}\right) \ni a_{2}$, then $\left(a_{2}, b\right) E$; thus if we find, by repeating this method, an element a_{n} such that $B^{*}\left(b, a_{n}\right)=a_{n}$, then $\left(a_{n}, b\right) E_{s}$.

Proof. If $B^{*}(b, a) \ni a_{1}$, then $b \smile a_{1} \geqq b \smile a, b \frown a_{1} \leqq b \frown a$ by Lemma 3 and hence $\left(a_{1}, b\right) E$ by Lemma 7. Similarly we have $\left(a_{n}, b\right) E$, and hence we have $\left(a_{n}, b\right) E_{s}$ together with $\left(b, a_{n}\right) E$.

Lemma 8. For $a \neq 0, E(a) \ni I$ if and only if there exists $x \neq I$
such that $\alpha \cup x=I$.
Proof. If $a I x$, then $a \smile x \geqq I$ by Lemma 3, and hence we have $a \smile x=I$. If $a \smile x=I$, then we have $a I x$ by the definition.

Lemma 9. If $(x, I) E$, then $(y, I) E$ for $y \leqq x$.
Proof. Suppose that $(y, I) E^{\prime}$; then there exists u such that $y \checkmark$ $u=I, u \neq I$ by Lemma 8 , hence $x \smile u=I$ from $I=y \smile u \leqq x \smile u$, this contradicts the hypothesis.

Lemma 10. If $(x, a) E$ and ($y, a) E$, then ($z, a) E$ for $y \leqq z \leqq x$.
Proof. Suppose that $(z, a) E^{\prime}$; then there exists $u \neq a$ satisfying $z a u$, so that $a=(z \smile a) \frown(a \smile u) \geqq(y \smile a) \frown(a \smile u) \geqq a$ and $a=(z \frown a) \smile$ $(a \frown u) \leqq(x \frown a) \smile(a \frown u) \leqq a$. Hence we have (1) $(y \smile a) \frown(a \smile u)=a$ and (2) $(x \frown a) \smile(a \frown u)=a$. In this case, (i) if $u \geqq a$, then we have yau together with (1) and (ii) if $u \leqq a$, then we have xau together with (2), and (iii) when a and u are non-comparable, let $u_{1}=a \smile u, u_{2}=a \frown u$, then we have $y a u_{1}$ and $x a u_{2}$ since $z a u$ implies $z a u_{1}$ and $z a u_{2}$. In each case of (i), (ii), (iii), we have a contradiction to the hypothesis. Thus we have the assertion.

Theorem 5. Let $C=\left\{c \mid E(c) \ni O, I, a, b\right.$, where $\left.(a, b) E_{s}\right\}$ in a lattice. If $C \ni x, y$ for $x \geqq y$, then we have $z \in C$ for $x \geqq z \geqq y$.

Proof. This is a consequence of Lemmas 9 and 10.
Theorem 6. In a lattice if $(d, a) E,(e, b) E$ and $M=B^{*}(a, d) \frown$ $B^{*}(b, e)$, then $E(x) \ni a, b$ for $x \in M$.

Proof. If $(d, a) E$ and $B^{*}(a, d) \ni d_{1}$, then we have $\left(d_{1}, a\right) E$ by Th. 4. Similarly if $(e, b) E$ and $B^{*}(b, e) \ni e_{1}$, then we have $\left(e_{1}, b\right) E$.

Henceforth we shall assume that L is a compact lattice with O and I.

Theorem 7. In a compact lattice we have
(1) $E(c)=I$ if and only if $c=O$,
(2) $E(c)=\{O, I\}$ if and only if $L=(c] \smile[c)$, where $[c)=\{z \mid z \geqq c\}$, (c] $=\{z \mid z \leqq c\}$.

Proof. (1) Suppose that $E(c)=I$ and $c \neq O$; then there exists a non-comparable element b_{1} to c satisfying $c \frown b_{1}=O$ since $E(c) \ni O$ by the dual of Lemma 8. Since $\left(c, b_{1}\right) E^{\prime}$ by the hypothesis there exists b_{2} such that $B^{*}\left(c, b_{1}\right) \ni b_{2} \neq b_{1}$. From $\left(c \frown b_{1}\right) \cup\left(b_{1} \frown b_{2}\right)=b_{1}$ and $c \frown b_{1}=O$ we have $b_{2}>b_{1}$ and hence $b_{2} \smile c \geqq b_{1} \smile c$, but $b_{2} \smile c \neq b_{1} \smile c$, for if $b_{2} \smile c$ $=b_{1} \smile c$, then $B^{*}\left(c, b_{1}\right)=B^{*}\left(c \smile b_{1}, b_{1}\right) \frown B^{*}\left(c \frown b_{1}, b_{1}\right)=B^{*}\left(c \smile b_{2}, b_{1}\right) \frown B^{*}(O$, $\left.b_{1}\right) \ni b_{2}$ by Lemma 5 , and hence $\left(c \smile b_{2}\right) b_{1} b_{2}$. On the other hand, $\left(c \smile b_{2}\right) b_{2} b_{1}$ from $b_{1}<b_{2} \leqq c \smile b_{2}$, thus we have $b_{1}=b_{2}$, a contradiction. Then we have $b_{1} \smile c<b_{2} \smile c$.

Similarly since $\left(c, b_{2}\right) E^{\prime}$ there exists b_{3} such that $B^{*}\left(c, b_{2}\right) \ni b_{3} \neq b_{2}$ and $c \smile b_{2}<c \smile b_{3}$. Accordingly we have an increasing chain $b_{1}<b_{2}<$ $\cdots<b_{n}<\cdots$, and hence $c \smile b_{1}<c \smile b_{2}<\cdots<c \smile b_{n}<\cdots$. Since L is a compact lattice, we have $b_{n} \rightarrow b_{0}$, and hence $c \smile b_{n} \rightarrow c \smile b_{0}$.

Furthermore we have $c b_{1} b_{3}$, where b_{3} is non-comparable to c, for $\left(c \smile b_{1}\right) \frown\left(b_{1} \smile b_{3}\right)=\left(c \smile b_{1}\right) \frown b_{3}=\left(c \smile b_{1}\right) \frown\left(c \smile b_{2}\right) \frown b_{3}=\left(c \smile b_{1}\right) \frown b_{2}=b_{1} \quad$ by $c b_{1} b_{2}, c b_{2} b_{3}$. And if $b_{3} \geqq c$, then $\left(c \smile b_{1}\right) \frown b_{3}=c \smile b_{1} \neq b_{1}$ contrary to $c b_{1} b_{3}$, and if $c \geqq b_{3}$, then $c \geqq b_{1}$ contrary to the hypothesis, thus b_{3} is noncomparable to c. Similarly we have $c b_{1} b_{n}$, where b_{n} is non-comparable to c, and $c b_{1} b_{n}$ tends to $c b_{1} b_{0}$ as $b_{n} \rightarrow b_{0}$ since L is a compact lattice. Then, we have $b_{1} \smile\left(c \frown b_{0}\right)=b_{1}$, and hence b_{0} is non-comparable to c. On the other hand, we have $\left(c, b_{0}\right) E$ from the meaning of least upper bound, this contradicts the hypothesis. Consequently we have $c=0$. The converse is trivial.
(2) We shall prove that there is no element which is non-comparable to c. Let b_{1} be a non-comparable element to c.

Since $E(c)=\{O, I\}$ we have $c \frown b_{1}>O, c \smile b_{1}<I$ and $\left(c, b_{1}\right) E^{\prime}$, hence there exists $d \neq b_{1}$ satisfying $B^{*}\left(c, b_{1}\right) \ni d$. If $d>b_{1}$, let $d \equiv b_{2}$ and if $d<b_{1}$, then let $b_{2}^{\prime} \equiv d$. If d is non-comparable to b_{1}, then let $b_{2} \equiv b_{1} \smile d$, $b_{2}^{\prime} \equiv b_{1} \cap d$. In these cases b_{2} and b_{2}^{\prime} are both non-comparable to c and $b_{1} \smile c<b_{2} \smile c, b_{1} \frown c<b_{3}^{\prime} \frown c$ as in (1).

Repeating this method we have two chains, increasing and decreasing, as follows:
$b_{1}<b_{2}<\cdots<b_{n}<\cdots ; b_{1}>b_{2}^{\prime}>\cdots>b_{n}^{\prime}>\cdots$, where b_{n} and b_{n}^{\prime} are non-comparable to c and $c b_{1} b_{2}, c b_{1} b_{3}, \cdots, c b_{1} b_{n}, \cdots$ and $c b_{1} b_{2}^{\prime}, c b_{1} b_{3}^{\prime}, \cdots$, $c b_{1} b_{n}^{\prime}, \cdots$ (it may happen that one of those sequences does not occur).

Since L is a compact lattice $c b_{1} b_{n} \rightarrow c b_{1} b_{0}$ and $c b_{1} b_{n}^{\prime} \rightarrow c b_{1} b_{0}^{\prime}$ as $b_{n} \rightarrow b_{0}$ and $b_{n}^{\prime} \rightarrow b_{0}^{\prime}$ respectively, where b_{0} and b_{0}^{\prime} are non-comparable to c and $\left(c, b_{0}\right) E,\left(c, b_{0}^{\prime}\right) E$ in the same way as in (1). This is a contradiction, thus we have the assertion of (2).

Theorem 8. In a compact lattice $E(a)=b$ implies $a \smile b=I, a \frown b$ $=0$.

Proof. Since it is obtained by (1) Th. 7 in case $b=I$, we may prove in case $b \neq O, I$, whence $a \neq O, I$. From $E(a) \ni O, I$ there exists b_{1}, b_{1}^{\prime} such that $a \smile b_{1}=I, a \frown b_{1}^{\prime}=O$. When $a \frown b_{1}=O$ or $a \smile b_{1}^{\prime}=I$ we have $b=b_{1}=b_{1}^{\prime}$ satisfying $a \smile b=I$ and $a \frown b=O$ from $E(a)=b$ and Theorem 1.

If b_{1}, b_{1}^{\prime} are both distinct from b, that is, $a \frown b_{1}>0$ and $a \smile b_{1}^{\prime}<I$, then $B^{*}\left(a, b_{1}\right) \ni b_{2}$ such that $b_{2}<b_{1}, a \frown b_{2}<a \frown b_{1}$ and $B^{*}\left(a, b_{1}^{\prime}\right) \ni b_{2}^{\prime}$ such that $b_{2}^{\prime}>b_{1}^{\prime}, a \smile b_{2}^{\prime}>a \smile b_{1}^{\prime}$ since $a \smile b_{1}=I, \quad a \frown b_{1}^{\prime}=O$ and $E(a) \ni b_{1}, b_{1}^{\prime}$. Moreover since $a \smile b_{2} \geqq a \smile b_{1}=I$ and $a \frown b_{2}^{\prime} \leqq a \frown b_{1}^{\prime}=O$ from $a b_{1} b_{2}, a b_{1}^{\prime} b_{2}^{\prime}$ by Lemma 3, we have $a \smile b_{2}=I$ and $a \frown b_{3}^{\prime}=O$. If $a \frown b_{2}>O$ and $a \smile b_{2}^{\prime}$ $<I$, then repeating this method we have increasing and decreasing chains $\left\{b_{n}\right\}$ and $\left\{b_{n}^{\prime}\right\}$, where
$a \frown b_{1}>a \frown b_{2}>\cdots>a \frown b_{n}>\cdots ; a \smile b_{1}^{\prime}<a \smile b_{2}^{\prime}<\cdots<a \smile b_{n}^{\prime}<\cdots ;$
$a \smile b_{1}=a \smile b_{2}=\cdots=I, a \frown b_{1}^{\prime}=a \frown b_{2}^{\prime}=\cdots=O$.
If $b_{n} \rightarrow b_{0}$ and $b_{n}^{\prime} \rightarrow b_{0}^{\prime}$, then since L is a topological lattice we have
$E(a) \ni b_{0}, b_{0}^{\prime}$ in the same way as in (2), Th. 7 and $a_{0} \smile b_{0}=I, a_{0} \frown b_{0}^{\prime}=O$. Thus we have $b_{0}=b_{0}^{\prime}=b$, satisfying $a \smile b=I, a \frown b=O$, this completes the proof.

Now we shall call a lattice L an extreme lattice when every element of L is extreme.

Lemma 11. xya, xyb, $a \geqq c \geqq b$ imply xyc.
Proof. By $x y a, x y b$ and $a \geqq c \geqq b$ we have

$$
y=(x \smile y) \frown(y \smile b) \leqq(x \smile y) \frown(y \smile c) \leqq(x \smile y) \frown(y \smile a)=y,
$$

$$
y=(x \frown y) \smile(y \frown b) \leqq(x \frown y) \smile(y \frown c) \leqq(x \frown y) \smile(y \frown a)=y,
$$

and hence we have xyc.
Lemma 12. In case $a \geqq b, a \neq I$ and $b \neq O$, if there exists z such that $x \smile z=I, x \frown z=O$ for any $x \in B(a, b)$, then $\{B(a, b), z\}$ is an extreme lattice. In this case if there exists y such that $x_{1} \smile z=y<I$ for some $x_{1} \in B(a, b)$, then $\{B(a, b), z\}$ is not an extreme lattice.

Proof. The first part of this theorem is obtained from Theorem 1. In the latter part, since $z \smile a=I$ from the hypothesis we have $(z \frown y) \smile(y \frown a)=z \smile(y \frown \alpha) \leqq(z \smile y) \frown(z \smile \alpha)=z \smile y=y$, and hence from $y \frown a \in B(a, b)$ we have $z \smile(y \frown a)=y$ since $x \smile z=I$ or $x \smile z=y$ for $x \in$ $B(a, b)$. Thus we have zya. We have $z y b$ from $z \smile b=y$. Accordingly by Lemma 11 we have zyc for $c \in B(a, b)$, that is, y is not an extreme element.

Theorem 9. A compact lattice which is an extreme lattice is a complemented lattice.

Proof. Let L be an extreme lattice; then if we take $c \neq O, I$ of L, then there exists $x_{1} \in L$ such that $\left(x_{1}, c\right) E$.

Case I. If $B^{*}\left(c, x_{1}\right)=x_{1}$ and if $c \smile x_{1}=I, c \frown x_{1}=O$, then x_{1} is the complement of c. If $c \smile x_{1}<I, c \frown x_{1}>0$, then let $c \smile x_{1}=a, c \frown x_{1}=b$. In this case there exists z such that $z \smile a=I$ and $z \frown \alpha=O$, for otherwise L is not an extreme lattice by Lemma 12. Hence we have $z \smile c=I, z \frown c=O$ by Lemma 12.

Case II. $B^{*}\left(c, x_{1}\right) \ni x_{2}, \cdots, B^{*}\left(c, x_{n-1}\right) \ni x_{n}, \cdots$. Since L is a compact lattice $c \frown x_{n} \rightarrow c \frown x_{0}$ and $c \smile x_{n} \rightarrow c \smile x_{0}$ as x_{n} tends to x_{0}. From $c x_{1} x_{2}, c x_{2} x_{3}, \cdots, c x_{n-1} x_{n}, \cdots$, we have

$$
\begin{aligned}
& c \smile x_{1} \leqq c \smile x_{2} \leqq \cdots \leqq c \smile x_{n} \leqq \cdots \leqq c \smile x_{0} ; \\
& c \frown x_{1} \geqq c \frown x_{2} \geqq \cdots \geqq c \frown x_{n} \geqq \cdots \geqq c \frown x_{0} \text { by Lemma } 3 .
\end{aligned}
$$

Thus we have $\left(c, x_{0}\right) E$. Then if $c \smile x_{0}<I, c \frown x_{0}>0$, we can find the complement of c in the same way as in Case I.

References

[1] G. Birkhoff: Lattice Theory, rev. ed., New York (1948).
[2] L. M. Kelly: The geometry of normed lattice, Duke Math. J., 19 (1952).
[3] Y. Matsushima: On the B-covers in lattices, Proc. Japan Acad., 32 (1956).
[4] Y. Matsushima: The geometry of lattices by B-covers, Proc. Japan Acad., 33 (1957).
[5] Y. Matsushima: On B-covers and the notion of independence in lattices, Proc. Japan Acad., 33 (1957).
[6] Y. Matsushima: On the relations "semi-between" and "parallel" in lattices, Proc. Japan Acad., 34 (1958).

