51. On Extreme Elements in Lattices

By Yatarō Matsushima

Gunma University, Maebashi (Comm. by K. KUNUGI, M.J.A., May 7, 1959)

In a series of papers [2-6] we have studied the concept of *B*covers and B^* -covers in lattices. $B(a, b) = \{x \mid axb\}, B^*(a,b) = \{y \mid aby\},$ where axb means that $x = (a \smile x) \frown (b \smile x) = (a \frown x) \smile (b \frown x)$. B(a, b) is called the *B*-cover of *a* and *b*. We shall say that an element *e* of a lattice *L* is an *extreme element* to an element *x* of *L* (or *e* is *extreme* to *x*) if $B^*(x, e) = e$. An element *e* is called *extreme* if it is *extreme* to some element of *L*. By (a, b)E we shall mean that *b* is *extreme* to *a* (that is, $B^*(a, b) = b$). We shall call (a, b) an *extreme pair* when (a, b)E and (b, a)E; we denote it by $(a, b)E_s$.

If $(a, b)E_s$ and a and b are comparable, then (a, b) equals (O, I). Elements O, I satisfying OxI for all x are called "extreme" by G. Birkhoff [1]. If a and b are complemented, then $(a, b)E_s$ by our definition [Theorem 1]. In Theorem 2, we shall give a representation of a Boolean algebra by maximal extreme B-covers. If (a, b)E, then we shall be able to find out an extreme pair $(a_n, b)E_s$ by Theorem 4. If the space of a topological lattice is compact, then we shall call this space a compact lattice. After Birkhoff [1], a chain is complete if and only if it is topologically compact. If we denote by E(a) the set of all elements which are extreme to an element a in a compact lattice, then we shall find some interesting properties of E(a) [Theorems 7 and 8], and we shall prove that a compact extreme lattice which consists of extreme elements is a complemented lattice [Theorem 9].

Theorem 1. If a and a' are complemented in a lattice, then $(a, a')E_s$.

Proof. If aa'x, then we have $a'=(a \frown a') \smile (a' \frown x)=a' \frown x$, $a'=(a \smile a') \frown (a' \smile x)=a' \smile x$ from $a \frown a'=0$, $a \smile a'=I$, and hence we have a'=x, thus we have $B^*(a, a')=a'$. Similarly we have $B^*(a', a)=a$. Hence we have $(a, a')E_s$. The converse of this theorem is not always true.

Lemma 1. $B(a, b) = B(a \frown b, a \smile b)$ in a distributive lattice.

Proof. This is proved by [3, Theorem 3].

Lemma 2. In a Boolean algebra L, if $(a, b)E_s$, then $a \smile b = I$, $a \frown b = O$.

Proof. Let a' be the complement of a, then $B(a, a') = B(a \frown a', a \frown a') = B(0, I) = L$ by Lemma 1. Hence $b \in B(a, a')$, that is, aba'.

Accordingly if $(a, b)E_s$, then b=a'.

Definition. B(a, b) is called a maximal extreme B-cover if $(a, b)E_s$ and if there exists no extreme B-cover B(c, d) such that $B(c, d) \supset B(a, b)$ but neither B(a, b)=B(c, d) nor B(c, d)=L.

Theorem 2. In a Boolean algebra L, any extreme B-cover is a maximal extreme B-cover and E(L)=L=B(a, a'), where E(L) is the set of extreme elements of L, and a' is the complement of a.

Proof. This is proved by Theorem 1 and Lemma 2.

Lemma 3. In a lattice axb implies $a \cup b \ge x \ge a \frown b$.

Proof. Since $x = (a \smile x) \frown (b \smile x) \ge x \smile (a \frown b) \ge x$ we have $x \smile (a \frown b) = x$, hence $x \ge a \frown b$. Similarly we have $a \smile b \ge x$.

Lemma 4. acb implies $B^*(a, b) \subset B^*(c, b)$ in a lattice.

Proof. acb and abx imply cbx by [3, Lemma 4].

Lemma 5. $B^*(a, b) = B^*(a \smile b, b) \frown B^*(a \frown b, b)$ in a lattice.

Proof. Since $a \smile b \in B(a, b)$ we have $B^*(a, b) \subset B^*(a \smile b, b)$ by Lemma 4. Similarly $B^*(a, b) \subset B^*(a \frown b, b)$. Conversely if x belongs to $B^*(a \smile b, b)$ and $B^*(a \frown b, b)$, then $x \in B^*(a, b)$.

Lemma 6. If $x \in B^*(a, b)$, then $x \in B^*(a', b)$ for any a' such that $a \cup b \ge a' \ge a \cap b$.

Proof. $B^*(a', b) = B^*(a' \smile b, b) \frown B^*(a' \frown b, b), B^*(a, b) = B^*(a \smile b, b) \frown B^*(a \frown b, b)$ by Lemma 5, but $B^*(a \smile b, b) \sub B^*(a' \smile b, b), B^*(a \frown b, b) \sub B^*(a' \frown b, b)$ by Lemma 4; hence we have $B^*(a, b) \sub B^*(a', b)$.

Lemma 7. If (a, b)E, then (c, b)E for any c such that $c \smile b \ge a$ $\smile b$, $c \frown b \le a \frown b$.

Proof. As in the proof of Lemma 6, we have $b \in B^*(c, b) \subset B^*(a, b)$ =b, and hence $B^*(c, b)=b$, that is, (c, b)E.

Now we shall write (a, b)E' when b is not extreme to a. Theorem 3. In any lattice

(1) if (a', b)E, (b', a)E for $a', b' \in B(a \frown b, a \smile b)$, then we have $(a, b)E_s$;

(2) if b is not extreme for some c satisfying $c \smile b \ge a \smile b$, $c \frown b \le a \frown b$, then (a, b)E'.

Proof. (1) If (a', b)E for $a' \in B(a \frown b, a \smile b)$, then we have (a, b)E by Lemma 7, similarly we have (b, a)E. (2) is proved immediately from Lemma 6.

Theorem 4. In a lattice if (a, b)E and $B^*(b, a) \ni a_1 \neq a$, then we have $(a_1, b)E$. Moreover if there exists $a_2 \neq a_1$ such that $B^*(b, a_1) \ni a_2$, then $(a_2, b)E$; thus if we find, by repeating this method, an element a_n such that $B^*(b, a_n) = a_n$, then $(a_n, b)E_s$.

Proof. If $B^*(b, a) \ni a_1$, then $b \smile a_1 \ge b \smile a, b \frown a_1 \le b \frown a$ by Lemma 3 and hence $(a_1, b)E$ by Lemma 7. Similarly we have $(a_n, b)E$, and hence we have $(a_n, b)E_s$ together with $(b, a_n)E$.

Lemma 8. For $a \neq 0$, $E(a) \ni I$ if and only if there exists $x \neq I$

No. 5]

such that $a \smile x = I$.

Proof. If aIx, then $a \smile x \ge I$ by Lemma 3, and hence we have $a \smile x = I$. If $a \smile x = I$, then we have aIx by the definition.

Lemma 9. If (x, I)E, then (y, I)E for $y \leq x$.

Proof. Suppose that (y, I)E'; then there exists u such that $y \smile u = I$, $u \neq I$ by Lemma 8, hence $x \smile u = I$ from $I = y \smile u \leq x \smile u$, this contradicts the hypothesis.

Lemma 10. If (x, a)E and (y, a)E, then (z, a)E for $y \leq z \leq x$.

Proof. Suppose that (z, a)E'; then there exists $u \neq a$ satisfying zau, so that $a=(z \frown a) \frown (a \frown u) \ge (y \smile a) \frown (a \smile u) \ge a$ and $a=(z \frown a) \smile (a \frown u) \le (x \frown a) \smile (a \frown u) \le a$. Hence we have \mathbb{O} $(y \smile a) \frown (a \frown u) = a$ and \mathbb{O} $(x \frown a) \smile (a \frown u) = a$. In this case, (i) if $u \ge a$, then we have yau together with \mathbb{O} and (ii) if $u \le a$, then we have xau together with \mathbb{O} , and (iii) when a and u are non-comparable, let $u_1 = a \frown u$, $u_2 = a \frown u$, then we have yau_1 and xau_2 since zau implies zau_1 and zau_2 . In each case of (i), (ii), (iii), we have a contradiction to the hypothesis. Thus we have the assertion.

Theorem 5. Let $C = \{c \mid E(c) \ni O, I, a, b, where (a, b)E_s\}$ in a lattice. If $C \ni x, y$ for $x \ge y$, then we have $z \in C$ for $x \ge z \ge y$.

Proof. This is a consequence of Lemmas 9 and 10.

Theorem 6. In a lattice if (d, a)E, (e, b)E and $M = B^*(a, d) \frown B^*(b, e)$, then $E(x) \ni a, b$ for $x \in M$.

Proof. If (d, a)E and $B^*(a, d) \ni d_1$, then we have $(d_1, a)E$ by Th. 4. Similarly if (e, b)E and $B^*(b, e) \ni e_1$, then we have $(e_1, b)E$.

Henceforth we shall assume that L is a compact lattice with O and I.

Theorem 7. In a compact lattice we have

(1) E(c)=I if and only if c=0,

(2) $E(c) = \{0, I\}$ if and only if $L = (c] \cup [c)$, where $[c] = \{z \mid z \ge c\}$, $(c] = \{z \mid z \le c\}$.

Proof. (1) Suppose that E(c)=I and $c \neq O$; then there exists a non-comparable element b_1 to c satisfying $c \frown b_1 = O$ since $E(c) \ni O$ by the dual of Lemma 8. Since $(c, b_1)E'$ by the hypothesis there exists b_2 such that $B^*(c, b_1) \ni b_2 \neq b_1$. From $(c \frown b_1) \cup (b_1 \frown b_2) = b_1$ and $c \frown b_1 = O$ we have $b_2 > b_1$ and hence $b_2 \cup c \geq b_1 \cup c$, but $b_2 \cup c \neq b_1 \cup c$, for if $b_2 \cup c$ $= b_1 \cup c$, then $B^*(c, b_1) = B^*(c \cup b_1, b_1) \frown B^*(c \frown b_1, b_1) = B^*(c \cup b_2, b_1) \frown B^*(O, b_1) \ni b_2$ by Lemma 5, and hence $(c \cup b_2)b_1b_2$. On the other hand, $(c \cup b_2)b_2b_1$ from $b_1 < b_2 \leq c \cup b_2$, thus we have $b_1 = b_2$, a contradiction. Then we have $b_1 \cup c < b_2 \cup c$.

Similarly since $(c, b_2)E'$ there exists b_3 such that $B^*(c, b_2) \ni b_3 \neq b_2$ and $c \smile b_2 < c \smile b_3$. Accordingly we have an increasing chain $b_1 < b_2 < \cdots < b_n < \cdots$, and hence $c \smile b_1 < c \smile b_2 < \cdots < c \smile b_n < \cdots$. Since L is a compact lattice, we have $b_n \rightarrow b_0$, and hence $c \smile b_n \rightarrow c \smile b_0$.

228

229

Furthermore we have cb_1b_3 , where b_3 is non-comparable to c, for $(c \ b_1) \ (b_1 \ b_3) = (c \ b_1) \ b_3 = (c \ b_1) \ (c \ b_2) \ b_3 = (c \ b_1) \ b_2 = b_1$ by cb_1b_2 , cb_2b_3 . And if $b_3 \ge c$, then $(c \ b_1) \ b_3 = c \ b_1 + b_1$ contrary to cb_1b_3 , and if $c \ge b_3$, then $c \ge b_1$ contrary to the hypothesis, thus b_3 is non-comparable to c. Similarly we have cb_1b_n , where b_n is non-comparable to c, and cb_1b_n tends to cb_1b_0 as $b_n \rightarrow b_0$ since L is a compact lattice. Then, we have $b_1 \ (c \ b_0) = b_1$, and hence b_0 is non-comparable to c. On the other hand, we have $(c, b_0)E$ from the meaning of least upper bound, this contradicts the hypothesis. Consequently we have c=O. The converse is trivial.

(2) We shall prove that there is no element which is non-comparable to c. Let b_1 be a non-comparable element to c.

Since $E(c) = \{O, I\}$ we have $c \frown b_1 > O$, $c \smile b_1 < I$ and $(c, b_1)E'$, hence there exists $d \neq b_1$ satisfying $B^*(c, b_1) \ni d$. If $d > b_1$, let $d \equiv b_2$ and if $d < b_1$, then let $b'_2 \equiv d$. If d is non-comparable to b_1 , then let $b_2 \equiv b_1 \smile d$, $b'_2 \equiv b_1 \frown d$. In these cases b_2 and b'_2 are both non-comparable to c and $b_1 \smile c < b_2 \smile c$, $b_1 \frown c < b'_2 \frown c$ as in (1).

Repeating this method we have two chains, increasing and decreasing, as follows:

 $b_1 < b_2 < \cdots < b_n < \cdots$; $b_1 > b'_2 > \cdots > b'_n > \cdots$, where b_n and b'_n are non-comparable to c and cb_1b_2 , cb_1b_3 , \cdots , cb_1b_n , \cdots and $cb_1b'_2$, $cb_1b'_3$, \cdots , $cb_1b'_n$, \cdots (it may happen that one of those sequences does not occur).

Since L is a compact lattice $cb_1b_n \rightarrow cb_1b_0$ and $cb_1b'_n \rightarrow cb_1b'_0$ as $b_n \rightarrow b_0$ and $b'_n \rightarrow b'_0$ respectively, where b_0 and b'_0 are non-comparable to c and $(c, b_0)E$, $(c, b'_0)E$ in the same way as in (1). This is a contradiction, thus we have the assertion of (2).

Theorem 8. In a compact lattice E(a)=b implies $a \frown b=I$, $a \frown b=0$.

Proof. Since it is obtained by (1) Th. 7 in case b=I, we may prove in case $b \neq O$, I, whence $a \neq O$, I. From $E(a) \ni O$, I there exists b_1, b_1' such that $a \smile b_1 = I$, $a \frown b_1' = O$. When $a \frown b_1 = O$ or $a \smile b_1' = I$ we have $b=b_1=b_1'$ satisfying $a \smile b=I$ and $a \frown b=O$ from E(a)=b and Theorem 1.

If b_1, b_1' are both distinct from b, that is, $a \frown b_1 > O$ and $a \smile b_1' < I$, then $B^*(a, b_1) \ni b_2$ such that $b_2 < b_1$, $a \frown b_2 < a \frown b_1$ and $B^*(a, b_1') \ni b_2'$ such that $b_2' > b_1'$, $a \smile b_2' > a \smile b_1'$ since $a \smile b_1 = I$, $a \frown b_1' = O$ and $E(a) \ni b_1, b_1'$. Moreover since $a \smile b_2 \ge a \smile b_1 = I$ and $a \frown b_2' \le a \frown b_1' = O$ from $ab_1b_2, ab_1'b_2'$ by Lemma 3, we have $a \smile b_2 = I$ and $a \frown b_2' = O$. If $a \frown b_2 > O$ and $a \smile b_2' < I$, then repeating this method we have increasing and decreasing chains $\{b_n\}$ and $\{b_n'\}$, where

$$a \frown b_1 \ge a \frown b_2 \ge \cdots \ge a \frown b_n \ge \cdots; a \smile b'_1 \le a \smile b'_2 \le \cdots \le a \smile b'_n \le \cdots;$$

 $a \smile b_1 = a \smile b_2 = \cdots = I, a \frown b'_1 = a \frown b'_2 = \cdots = O.$
If $b_n \rightarrow b_0$ and $b'_n \rightarrow b'_0$, then since L is a topological lattice we have

No. 5]

 $E(a) \ni b_0, b'_0$ in the same way as in (2), Th. 7 and $a_0 \smile b_0 = I, a_0 \frown b'_0 = O$. Thus we have $b_0 = b'_0 = b$, satisfying $a \smile b = I, a \frown b = O$, this completes the proof.

Now we shall call a lattice L an extreme lattice when every element of L is extreme.

Lemma 11. $xya, xyb, a \ge c \ge b \text{ imply xyc.}$ Proof. By xya, xyb and $a \ge c \ge b$ we have $y=(x - y) \frown (y - b) \le (x - y) \frown (y - c) \le (x - y) \frown (y - a) = y,$ $y=(x - y) \cup (y - b) \le (x - y) \cup (y - c) \le (x - y) \cup (y - a) = y,$ and hence we have xyc.

Lemma 12. In case $a \ge b$, $a \ne I$ and $b \ne O$, if there exists z such that $x \smile z=I$, $x \frown z=O$ for any $x \in B(a, b)$, then $\{B(a, b), z\}$ is an extreme lattice. In this case if there exists y such that $x_1 \smile z=y < I$ for some $x_1 \in B(a, b)$, then $\{B(a, b), z\}$ is not an extreme lattice.

Proof. The first part of this theorem is obtained from Theorem 1. In the latter part, since $z \smile a = I$ from the hypothesis we have $(z \frown y) \smile (y \frown a) = z \smile (y \frown a) \leq (z \smile y) \frown (z \smile a) = z \smile y = y$, and hence from $y \frown a \in B(a, b)$ we have $z \smile (y \frown a) = y$ since $x \smile z = I$ or $x \smile z = y$ for $x \in B(a, b)$. Thus we have zya. We have zyb from $z \smile b = y$. Accordingly by Lemma 11 we have zyc for $c \in B(a, b)$, that is, y is not an extreme element.

Theorem 9. A compact lattice which is an extreme lattice is a complemented lattice.

Proof. Let L be an extreme lattice; then if we take $c \neq 0, I$ of L, then there exists $x_1 \in L$ such that $(x_1, c)E$.

Case I. If $B^*(c, x_1) = x_1$ and if $c \smile x_1 = I$, $c \frown x_1 = O$, then x_1 is the complement of c. If $c \smile x_1 < I$, $c \frown x_1 > O$, then let $c \smile x_1 = a$, $c \frown x_1 = b$. In this case there exists z such that $z \smile a = I$ and $z \frown a = O$, for otherwise L is not an extreme lattice by Lemma 12. Hence we have $z \smile c = I$, $z \frown c = O$ by Lemma 12.

Case II. $B^*(c, x_1) \ni x_2, \dots, B^*(c, x_{n-1}) \ni x_n, \dots$. Since L is a compact lattice $c \frown x_n \to c \frown x_0$ and $c \smile x_n \to c \frown x_0$ as x_n tends to x_0 . From $cx_1x_2, cx_2x_3, \dots, cx_{n-1}x_n, \dots$, we have

 $c \smile x_1 \leq c \smile x_2 \leq \cdots \leq c \smile x_n \leq \cdots \leq c \smile x_0;$

 $c \frown x_1 \ge c \frown x_2 \ge \cdots \ge c \frown x_n \ge \cdots \ge c \frown x_0$ by Lemma 3.

Thus we have $(c, x_0)E$. Then if $c \sim x_0 < I$, $c \sim x_0 > O$, we can find the complement of c in the same way as in Case I.

References

- [1] G. Birkhoff: Lattice Theory, rev. ed., New York (1948).
- [2] L. M. Kelly: The geometry of normed lattice, Duke Math. J., 19 (1952).
- [3] Y. Matsushima: On the B-covers in lattices, Proc. Japan Acad., 32 (1956).

No. 5]

- [4] Y. Matsushima: The geometry of lattices by *B*-covers, Proc. Japan Acad., **33** (1957).
- [5] Y. Matsushima: On B-covers and the notion of independence in lattices, Proc. Japan Acad., 33 (1957).
- [6] Y. Matsushima: On the relations "semi-between" and "parallel" in lattices, Proc. Japan Acad., 34 (1958).